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ABSTRACT

On the Establishment and
Bvolution of Orbit-Orbit Resonances

by
Charles Finney Yoder

In the solar system, there exist soveral sxamples of
gravitational resonance between two or more satellites Or p.anets
in which a special angle variable is observed to librate. GColdreich
has suggested that in the case of planetary satellites & tidally
induced torque acting 2n the satellites may have played an
essential role in tha establishment and subsequent evolution of the
observed resonances. This proposal is thoroughly investigated as
it applies to the threo resonances Among pairs of satellites of
Saturn and is shown to be a plausible mechanixm for thelir establish-
ment but ie less successful, in the Tital-¥yperion case, in provid-
ing a reasonable time scale for the damping of rhe amplitude of
libration,

The solution of the problem is reached in three stages. First,
a theoretical description of txansition is developed for a simple
time dependent pendulun plus constant sppiled torque. The
evolution of the system through the varicus vhases (i.e. positive
rotation, negative rotatian and libration) is described in terns of
the wotion uvf tha extremea or "roots” of the momentum variable in

vi



the complex plane. A transition phase is defined and equations of Hipkin that the moon may have besn trapped in an orbit-orbit

motion of these 100ts are derived fram which a lowest order estimate remonance with another planet in the past is examined and found to
of the probability for transition fram a xotation into libration is be untenable,
obtainad. ’

Second, the two bodv gravitational interaction 1s exparded and
reduced to a one dimensional time independent Hamiltonian which
accurately describes the motior ;£ the resonance variable in the
abgernce of tides -~ if the satellites’' inclinations and eccentricities
are relatively small and if the perturbations in the semimajor
axes during each phase of its evolution are also small. The effect
of the tides is then introduced by redefining the orbital elements
in such a way as to recovar the Hamiltonian formulation, ;hc

important differenice being that it is now time dependent,

The theoretical aprroach outlined for simple pendulim systems

is then applied to eccertricity dependent ¢ . The dependence
of the probability for transition into libration is obtained as a
function of the mean eccentricity and the mechanism governing
transition in various limits ls discussed. The damping of the
amplitude of libration as a function of the tidal charge in the
orbital parameters (principally semimajor axis) is found via the
action integral.

Pinally, the theoretical mqdel developed is then applied to

the Saturn r and £ d to agree with the recent work of

Allan, Greenberg and Sinclair. 1In addition, a proposal by R. G.
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1.1 INTRODUCTION

In the solar system there are several instances in vhich the
ratio of the mean motions of a pair of satellites is very nearly a
simple fraction., This kind of relationship is called a cCommensura-
bility. Some examples include the three satsllite-satellite comren-
surabilities of Saturn (Mimas-Tethys, 2i11; Enceiadas-~Dione, 2:.;
Titan-Hyper.ion, 4:3) and the 3:2 comuensursbility of Neptune-Pluto,
An equivalent statement of a commensurability is the relation

4§ -0,
where j and )' are integers and . and )' are t'e respective rean
longitudes of the pair of satellites (or planets). The obvious

extension of the above relation to N bodies is
N
£ iMNao. (1.1.1)
nel
The best known exampls of a coxmansurability of three bodies
involves the JI, JII, and JIII satellites of Jupiter throuch the

relation

Agr = Rogy * Dypep 0

Ohservad commansurabilities are not reatricted to thase orbit-
orbit types. Another type involves the ratic of the orbital perjod

to the rotational perfod of either the same or different bodies.



Respective examples of this type are the spin-orbit interaction of
Mercury (Goldreich and Peale, 1967) and the possikie orbital
comrensurabilities of artificial satellites with the earth's siderial
day (Allan, 1967).

These special relationships would not be nearly as Intaresting
if they did not nave a physical basis for their existence. First of
all, the commensurability relatiun is often not the physical
var-able which best describes the observations. Examining the
visual evidence more closeiy, we find that in many cases thers exists
a sinrgie resonance variable ¢ which appears to librate about either
mod '-) or med(2w), and, for the two-body case, hag the form

linear function of perihelion (0))

P30+ L node () of esch body.

(1.1.2)

The mechanism wvhich mairtains this commensurability or resonance in
every krown instance involves a gravitational interaction which is
fairly well understood (Hagihara, 1972, pp328-52), A study of the
satellite-satellite interaction of the two-~body resonance, after the
two-kody gravitationa) potential has bern expanded in terms of the
orbital elements w.ich de<cribe the position of each body, reveals
that ¢ is that argument of a cosine functlon in the expansion which
becames very slowly varying for a nearly cammensurate motion.
Purthermore, this resonant term in the axpansion often acts as a
pendulur-like potential, being the dominant factor controlling the

very long period motion of both satellites. This suggests that a

one-dimensional Hamiltonian might be derived as an approximation of
this very long period behavior, and is the subject of chapter two.
12 the expansion (and Hamiltonian!) is valid for a range >f ¢ which
includes both the rotational and librational phases of the resonance
variable, ther, of course, $§ may executs either rotaticns or li-
brations, depending on the parametars of the system, Althougl the
libratiop of the resonance variable can be explained in terms of the
mutual gravitational interactions bet-.een the partners, it seems
unlikely that a state of libration could have existed since the
earliest stages of formation of the solar system., In other sords,
there should be some mechanism or nmechanisms by which the partners
evolved into their presenily observed state., One inter~sting fact
that Roy and Ovenden (1954) have shown is that the high frequency
of commensurabilities in the solar system cannot he assigned to a
chance initial arrangement,

There appears to be two basic solutions to the two cuestions:
1) why so many commensurabilities? and 2} vhy so many librating
resonance variables? One possibility is that s resonant or
commensurable configuration is inherently more stable than a
slightly off-resonant configuration. As fllustration, consider the
Trojan asteroids which move in approximately the same orbit as
Jupiter, clustered in two groups, 60° ahead and behind Jupiter
(Brown and Shook, 1964, pp., 250~88}), Their gravitational interaction

with Jupiter tends to maintain the one to one cormensurability.



Imagine what would happen to an asteroid with a neu_ly circular
orbit which is slightly larger or smaller than Jupiter's. Within a
short time spar that astercid would make a close approach to Jupiter.
If clese enough, the gravitational force of Jupiter ~ould dominate
that of the sun, and radically change the orbit of this asteroid,
perhaps even removing it from the solar system by changing its orbit
frem elliptic to hyperbolic, nr removing it through a collislon. In
this example, the lifetime of any asteroid not in resonance with
Jupiter but having nearly the same orbit or a crossing orbit, would
tend to be very short in comparison with the age of t%e solar system,
Thus time, by Jupiter, endows the Trojans with a divine relationship!

A recent proposal by Overnden (1972), based on this idea of maximum

stability, is that the high freg y of wrabilitiee is a
raeflection of the evolution of the solar system towards a "Least
Interaction Action” configuration, driven to its present state by
purely conservative gravitational forces.

The second possibility is that dissipative effects, which give
rise to secular torques on the affected bodies, drive them towards
a comrensurability with one or more other bodies, and that something,
either in the nature of the ¢ ssipative mechanism or in its inter~
action with the gravitationa force, leads to transition into a
lilration of a particular resonance variable, Goldreich (1965) has
suggested that the dissipative mechanism operating in srtellite

systems of the planets is the inelastic tidal respnnse of the planet

to the pull of each satellits, Already a similar theory, when
applied to the spin-orbit resonaice of Mercury, has led to a
satisfactory explanation of evolutjon and capture into libration
{Goldreich and Peale, 1967). In this instance, capture is ajparently
caused by an asymmetry in the tilal torcue acting on tha spin cf
Mercury, as the velocity of the resonance variable 0 vanishes and
then changeg eign. An important difference in the orbit-orbit type
of resonance is that the capture mechanism does not appear to depend
in any important way on the detajls of the tidal interaction itself,
as it does with the spin-orhit case. Recent mmerical studies of
Greenberg (1972) and Sinclair (1972) indicate that the tidal
mechanism does satisfactorily explain the Saturn resonances and that
capture into libration is caused by the tidal torque acting through
the gravitational interaction, The existence of a ser 'ar terque of
any significance acting on the satellites of the major planets has
not been documented with corresponding visual evidence of a secular
chanye in their orbital periods. Ti.s effect is apparently too
small to be measurable at present. Still, an estimate of its
magnitude has been inferred from the presant sige of orbit of the
innermost satellite (Goldreich. 1965), The best evidence for tidal
friction comes frow obgervatious involving the poriod of our moon
(Munk and Macdonald, 1960, p. 198). In fact, the present rate of
increase leads to something of a paradox in the age of the earth-

moon system compared to the age of the earth, assuming a corstant
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dissipative mechanism. A novel proposal of R. Hipkin (in press) 1is
that the moon may have been trapped in a commensurability with Venus
at a fixed radius for a long enough period of time to res~lve the
time scalé paradox. Unfortunatcly, the proposal does not appear to
be feasible because of various factors discussed in ssction 4.2,
Perhaps the solution is that, in the past, the dissipation function
has been variable, as indicated by some paleontological evidence
(Pannella. MacClintock and Thampson, 1968) .

At present, Goldreich's tidal evoluticn hypothesis must f£ind its
support thiough indirect evidence involving its consistency in
explaining present observations and past history. Applied to each

satellite-satellite resonance, it should lead to the results 1) that

capture into the presently observed r is a rea bly
probable event, and 2) that the time that this event took place was
within the age of the solar system, given a reasonable estimate of
the tidal tcrgue, Allan (1969) has already shown for the Mimas-
Tethys commensurability, given tidally induced torques acting on
each resonance partner, that the evolution of * .e orbital elements,
including the amplitude of libration, could be followed backward in
time to determine the initial values of the elements at the time of
capture, estimated to be akout 2 » 10B years ago., Unfortunately, the
approximations that Allan made for this tase cannot be used for the
remaining two cases. A major problem before us 1s to carry out a

similar analysis of the other satellite-satellite rrsonances and

follow their svolutioa back in time.

Attempting to understand how these three satellite-ratellite
resonances of Saturn evolved, in the context of Goldreich's
hypothesis, was certainly one of the major guals of this thesis,
although the first problem attempted was to determine the feasi-
bility of Hipkin's lunar resonance hypothesis. Lots of time passed
before it was realized that each was governed by a one-dimensional
Hamiltonian, although it turns ocut to be a much poorer arrroximation
in Hipkin's lunar case. More time was spent determining how to best
introduce the tidal torque into the Hamiltonian so as to preserve its
canonical character. The resulting Hamiltonian is, of course, an
explicit function of the time, and it is this expliri% dependence
which allows the system t. evolve. Even more time elapsed before it
was realized that no adequate analytical theory existed with which
transition for even the simplest pendulum system wss thorcughly
explained., In the process, the scope of the thesis has brocdened
considerably and made it difficult to find some point to end the
affair and bring it to some conclusion, The exposition of this
paper breaks down into three exercises: 1) development of a one-
dimensional Hamiltonian from the satellite~satellite interaction,

2) development of transition theory for this pendulun-like
Hamiltonian, and 3) applications,
The devalopmer;t of an approximat: description of the motion due

to the resonance variable is a complex exercise using, for the most



part, well-known technigues of celestial mechanics and variational
theory. The first step is to reduce the interaction to a one-

dimensic ~. :: .ltonian of the form
Bix,8,8) = 1/2(x + c(8))2 + bix,t)cos, (1.1.3)

Chapter two takes the speciti. ~vample of a satellite-satellite
gravitational interaction and cutliner a procel:rce for expanding the
interaction in terms of the orbital elemaacs, The varia*-ional
equaltions of motion of a canonical set of elements are also derived.
A method for the elimination of the "short-period™ terms in the
interaction is sketched, along with a qualitative discussion of the
arrroximations involved in reducing the system to one degree of
fresdom. The tidal interaction is further discussed and a method is
proposed for introducing the tidal interaction into the tide-free
Hamiltonian. 1In addition, a discussion of the other physical
situations for which the above Hamiltunian is a good approximation
of the motion is given. 1In chapter thres, .he analytic behavior of
the Ramiltonian H(x,¢.t) is discusse in detail. PFirst, the
similarities to and differences from a siwple pendulum are discussed
for the tide-free case, and the possible motions of the system for

different functional forms of b(x) are found using elementary

analytical principles. Then the motion of the time-dependent sy
is obtained through an investigation of the motiou of the "rcots® of

a polynomial in x. In the time-independent system, a pair of these

[P

roots is exacil; *he extremes of the motion of x, while in the time-~
dependent cuse, they at least bound the motion of x. This method of
attack and its associated "picture" have rather wide application and
can reduce many difficult problems involving transitions between
distinct phases to a tractadble form, Capture criteria are
specifically developed for two kinds of eccentricity-deperndent
zesonance variables.

The results are then applied in chapter four to ths three
satellite-satellite resonances of Saturn and to Hipkin's lunar~
planetary resonance hy:othesis, In the first exercise we find that
the existence of a tidally induced torouve does succesafully explain

the capture process. In fact, for two of the three examrles

ai d, the r nce variable automatically evolves into libra-
tion. But the hypothesis is less successful in resolving the
evolutionary time scale, The negative results of the second
exercise =hculd have a sobering influence on those whomight over-

estimate the importance of ph va, Pi:ally, the

three~satellite commensurability of Jupiter i« briefly discussed,

and a probable history of its evolution is given.

The materjal in chapter three concerning the r criteria
is different enough from other approaches to the proble require
a lengthy introduction of its own, mainl- ‘o unde:stand * nature
of the -pproxinuti'ons which will be used. Pirst, t} on of a

gsimple pendulum with a time-dependent restorirjy fr.. i
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irvestigated. Attention is focused on the "roots". We discover that
they are four in number and are points in the complex plane. One
pair of these roots bounds the motion of ths momentum variable, and
each rout ~an be uniquely labeled, Whether the angle variable ¢
executes positive rotations, librations, or negative rotations is
qualitatively determined by the relative position of the roots, aiong
with the specification of these roots which bound the motion. This
leads eventually to the precise definition of the trarsition ptase

in terms of tae mutual motion of the roots ( @ of the momentum
variable. To complement this picture, the firsteorder equations of
motion of each root are derived, fram which t' e analytical properties
are deduced and a transition integral” is defined. Naxt, a constant
torque tecm is added to this simple pendulum Hamiltonirn and
trausformed to a new furm very like (1.1.3), uxcept that the
coefficient b is independent of x, Again the equations of motion

of each root are derived, their motion discussed, and a transition
integral defined. These sirpler syste.s need to Le clearly under-
stood before we apply similar methods to the more complex ca

certain amount of repetition is involved, but it is necessar:

understand the scops of the theoretical approach taken.

11

1.2 THEORY OF TRANSITION POR SIMPLE PENDULUM SYSTEMS

The first exarple we shall examine is that of a simple pendulum

governed by the Hamiltonian
Hip.9) = 1/2 p° + blt)cos, (1.2 .a)

where the equations of motion are given by

gp ., _ .
A"t blt)siné, b)
U S
at " "% P )
ax am _ay
3 " * 5e " ge co%t @

The eion convention for the ecquatfons ¢ 1otion .5 the normal con-
vention adopted in celestial me..anics a i .8 used throughout this
paper. Ordinarily, changing t .. sijin convention should result in
replacing the ordinary Hewilt-nian by its negaive counterpart to
preserve the equations of mot.... Thisa should mean that th. kinetic
energy term (1/2 pz) should enter in equction (1.2.la) with a minus
sign. The above Hamiltonian is our subject of study simply because
of its similarity to the Hamiltonian develop 4 later from the orbit-
orbit interaction. 1In that interaction, the eguivalent kinetic
energy term is nega_tive—definite.

Initially, say, the pendulum is executing positive rotations.

If the coefficient b(t) slowly increases in magritude with time, then
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the velocity of the pendulum as it passes over the top will slowly
decrease (Best, 1968). Eventually, the pendulum will not have
encugh enerqgy to pass over the top, and thereafter will librate, An
examinaticn of the solution for the mamentum variable p will suggest
an ecuivalent picture of the transition. If b’t) were constant, then
we couled fini a solution for p in terms of the time by using the

Hamiltonizn to eliminat» ¢. .he “esulting integral solution iss

J° ap hanichein®) ., _ (1.2.2)
Po /R
where
2,2

Rip} = b2 - (h - 172 pB 2. -
The function R{p) is a quartic pelynomial whose four roots are iven
by

Roots = ¢+ 3l + B), *JI(H - b). 2.2.3

The m~tion of p is bounded by a pair of these roots, with p osciliat~
ing back and forth butween them with increasing time. Inspection of
the equation of motion for p reveals that these turning points of p

(maxima and minima) occur when
¢ = 2nvw, oxr ¢ = (2n+ 1}vw,

n being an integer. 1In subsequent discussion, wod(w) and 1e0d(2n)
shall & signate ¢ equal to 2n% and {2n + 1)¥, resper“ively. 1If the

pendulum is executiny positive rotations ((5) > 0), then the negative

13

set of roots corresponds to the value of 0 at the top and bottom of
its swing.

Therafore, the four roots can be completely labeled Ly determin-~
ing the value of ¢ (either mod(r) or '27)) and the sign of (‘ .
at that root, Inspection of the equations of . tion reveals th.t
the first set corresponds to ¢ = mod(n} and the second set to
¢ = mod(2n), and chat they are campletely specified by the set of
labels Poyt Ppoe Pagyr and ph_. Puctoring R{p) in terms of thLese

roots we have

Rip) = 1/4(p, - pilp - plp,_ = phip - p;,,_) ' (1.2.4a)
and
Pps * /20 + ), Popy = /200 - b1, b)

Physically p is always real, forcing R(p) to be 2 0. 1f all
the rootr ire real, then the motion of p ‘s bound Setween either
Pt Ppos OF Pooo Py and corresponds to positive or negative
rotation, respectively. The motion is bounded between the two 7~
roots or two 2n-roots, or, » librates only if the ~rposite pair is
complex. We shall adopt the convention that in the rotation phase
(all roots real) the n-zoots lie in‘erior to the 2w~roots, or b < 0.
Diagrammatically, we can repreasent “he three distinct states of the
pendulum -- pouiti\}a rotation, negative rotation, and likration -~ by

a graph of the relative locations of the roots in the cocmplex plane
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FIGURE 1.2.1 PENDULIM STATES
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{nee figures 1.3.1a, b, @), Also ineluded $n these diagrams are
graphs ef cthe functi~n b(x) versus ¢ in polar coordinstes. The
pendulum 1ibrates about ¢ = mod(an) if the ¥ < |b! and rotates 17

H > (b]. Allowing b to be a function of time dnes not qualitatively
chanye *the inteyral solution given by (1.2.2) except that both N and
b are time~dependant, and therefore the roots are tine-dependent,
Inatead of being fixed, the roote now move in the compi.r plane.,
Intuitively, we see that passage from rotation to likration must
inveive the motion of the w~runts toward the origin and then out alony
the imaginary axis, This pictitre of the motion suggests that we
100k for squations of motion of the roots thamselves, Since the
roots are only funotions of h(t) and iix,$,t), the motion of s
given root P, must satis’y

ép, P p
L d g 44 rx
Fral TS e (O T 1.2.%

The partiasl derivat..es of p with respect te b and M are
sbtained from tha reots thamselves (1,2.4b), while the tine

derivative of H fe obtained from its partial tine desivative

(1.2.2a)9
an _ wm _ ab
a—‘ - r' - z—' cosé. (1.2,6)

Thus the equations of motion for the roots ares

4p
e} % - S M. (1 + cosd), 1,2,7a)
dat Pyy 13
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dp
anz ) ddiy) . _
3t W (1 - cosd). Y}

The qualitative motion of each can be oasily determined, given the
signs of g::—t) and of the root, 1If |b(t)]| increases with time, and
since we have adopted the convention that b(t) be negative, then the
7-rcots mcve toward Lha origin and the 2n-roots awey from it. Thus
the fluctuation in 0 caused by the pendulum force grows as
transition to libration is approached. One interesting observation
is that the w~roots are stationary (d-—:?- o 0) when ¢ » mod(w%) or
P=Pp,. But p itself is a minimom when it is at the root Py and is
stationary. 1f the root were not stationary when p = p”.if.hon it is
a simple exercise to show that p would suffer an infinite acceler~
ation at this point. The anuiogous situation holds when p = Poy*

We could use (1.2.7a, b} to determine the first order (in S2{th
secular behavior of the roots by integrating them over one
revolution and approximating the motion of x and ¢ “y replacing b(t)
wich its mean value over the revclution. In this instance, the
action integral represents a simpler method to obtain the secular
motions.

The above equations are uniquely useful in the transition phase.
This phase will be defined by the conditions that 1) it starts at

the instant the v~roots coincide and beccme imaginary for scme

initial values {p‘,oi). 2) it continues as the motion of p is

17

carried to the opposite 2v-root, and 3} it ends when p raturnas to
the origin (the real part of the Py root), This motion corresponds
roughly to the revolution in which é goes to zero, reverses sign as
the pandulum moves backwards through the L. .tom and acain aces to
zero near the top, 1If initially the pendulum executes positive
rotations and %%L > 0, then figure 1.2.2 represents the motions {n
the complex p plane.

The change in the v=roots during this trensition phase can be

obtained by intagrating the equation of motion, The result is

12 - p2un - I:: a1+ con. (1.2.8

fotice that p:u) « O from the definition of transition phase. The
integrant s negative definite (g% < 0), implying that p:(ﬂ is
negative or p'(f) imaginary, The rangs of the initial value 0‘ is
»m '1 £ 3In, The angle ¢ than increases, passing through the
botton position of the pendulum and finally reaching a maximum at

‘c =) - “c' whers “c is a swall positive angle of
-3/2 d|b
otjn|~¥/2 alel |

6 then reverses sign, and the angle ¢ decrsases urtil it reaches a

=372 4lb
minimum at ¢, = ¥ + 4, (80, > O and otlb} 4
To simplify our problem, let's choose :—: to be constant, and

demand that it be comparatively mmall, Also change the integration

variable from ¢t to ¢, The result is
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FIGURF 1.2.2 TRANSITION PHASE

Thiis phase will be defined by *ha coiuiitions that

1) it starts at the instant the w-roots coincide and become
imaginary for some initial values {pi.fbi)i
Hexe we choose the minimum possible value of 01 to equal m

2) it continues as the motion of p is first towerds the p2v-toct.
where ¢ = 2w ard ;(21-) > 0, and then back towards the point
where 0 vanishes at a maximuoe angle oc)

3) it continues as o reverses sign and che motion of p is carried
to the opposite 2n-root where ¢ ajain equals 2v but 8{2“) < 0g

4) it ends when p returne to the origin (the real part of the

p'-too') where 0 aguin vanishes at some angle 0’ near ¢ = w,

AR e oA
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vl « R [P S s conslatanioel a.2.9

b 2R3« xicrcontr 2

where

Kit) = =RAEL

H{t)

It should be emphasized that the above is s pathelike intugral in
which the variation of ¢ in going from 01 to 0! is deternined by the
transition phase diagram (fig, 1.2.2). Durine transition K{t)
changes from one to a value slightly above it., Since g—g - -'%% at
$é @ mod|{v), K(t) is very nearly a constant, no matter how long a
time the pendulum spends near ths top during transition, The
contribution to the inteqgval is small for 4 & w gince the integrand
vanishes. Fxcept for near the top, the motion of 4 is fast corpared
to any change in H{t) or K(t), and the integral ir well-bounded.

There is a stationary solution for p @ 0, ¢ = mod(r) or wod(2v),
and there exists the sinqular possirility of a sticking motion in
which p slowly approaches the top and “"sticks" there. Motions very
near this singular event will have very long transition times,
implying H(t) couid change appreciably as p moves betwsen the
complex w-roots, The question is, how near?

It turns out that the set of motions which have a long
transition timo are restricted to an exprnentially small set
of o(|p|~¥? 9-.!‘{’1) of initial values of ¢,. To demonstrate this

assertion, lot's determine the condition for which the change in

H(t) in the time inierval t, L I 3

b is of O(H(ta)). In addition,
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this particular calculation will be restricted to the event where P
mOoves between the camplax we-roots while ¢ = 0+ and reverses sign.
The transition tire 8t = t.b - t‘ can be calculated mosc easily by

finding the analojous solution for ¢ in terms of t. We find

fic assignidy > 00 . iy _agsigniisd < 0)
1+ l((t)t:asQ)]'/2 0c {14+ r(t)conO)llz

a
1.2.10)

The iniearal over ¢ begins at an angle ¢a for which 0 is positive,
continues to the angle ’c where 0 vanishes and reverses sigm, and
ends as ¢ muves back to the angle ’b' The integrand on the left
hand side of (1.2.10) is large only for anales very near ¢ = mod(w},
and its value will tend to be independent of the linits 05 and ‘b as
long as they are not nearly equal to oc. Therefore, the
calculatinn can be simpl'ciied by choosing 0a - ’b' expanding cos¢d
about ¢ = 3r - &¢ and changing the limits of integration as

follows:
°c = 37 - “c' °a - 3y - s’a,

The small differences, “c and “u' are positive and “c < 60.
sinc- ‘.: > ol. Near the top of the pendulva H is very nearly equal

to b(t). This means that the function ¥(t) very nearly equalg the
=1 db

valus one to O(b E't-) during transition, implying that the change
in R(t) as the pendulum moves over tne top is of O(I!:"'1 g%fz). A

first order sstirate can be obtained by choosing K(t) to be equal

P R i .

- {*bianie) /2,
t
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to its value at ¢ = §,, and approximating :ha integrand on the right

hand side by
(1 + XAticoss) & -Ald) + 172 &7, a.2.11)

where X(t) = 1 + A(t). Pinally, !1(t) can be replaced by b(t) in the
integrand of the right hand side of (1.2,10).

Por a linearly changing b(t), we can write

be) = be) 1 » E2taly, 1.2.12)

and 7 .8 the “"slow timo"” associated with the change in bo. vith

these approximations, both sides can ke integrated. The result is:

77 .. 172 t.3/2
2/7 1nse + FIETE + 807180 L 222 |nie 1120 0 HY
c S¢c 3 a
t =t
| b A. (1.2.13)
)

84 can be chosen to be >> 60c such that the contribution from the
a

lower limit is relatively small. The angle “c is the angle for

which & vanishes or for which {1 + K(‘c)cow) = 0. Thus ¢¢_ is

directly related to A(Oc). and is approximately
2 1.2.14)
172 6 ocﬂ' A“c)' {

The transition time cb - t‘ must be of order v if the change in
b(t) is of O(b(tn))'. Por the sake of calculation, we shall demand

that b(ta) - 2b(ta) or that "b - t° = t, The natural period, T, of
2n

Tl

the pendulum i3 , which §s the period of the pendulur in
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the s.all libration limit. Solviwg for “c'
84 & 200 e o9 a-”—(z_a-/z.a_:-.l‘.}. X
c c T a.,2,15)
The vilue of Al4_) is related to p>(t) by (1.2.4.6, 1.2.9,
1.2.11)
PPy el
IR 2H—“:)-. a m:-)- (1.2.16)
and p:“(_). vhich depends on the initial value 01, can be
approximated by
2 20 o 2 PT - e gleosuznll Loy <,
41 . MTotey |
€1.2.17)

Obgerve trat (1.2.16) dspends on the value of hltc). not b(t‘)
or b"‘b)' The relationship between tc and t! can de found lrgn an
inspection of (1.2.10), in the light of the approximations so far
invoked. We see that each of the terms on the left hand sidm of
1.2.10 are approximately egual. This implies that the integrals
{obtaired from the right hand side) aveluated between t.c and ta and
tb and tc also ecual. Explicitly

[feamner)t e 5 [oaneyt/ae .

ta tc

The above integrals are approximated by the right hand side of

(1.2,13). Given ‘b'ta.'z"’ . the important results are:

Y It S P N
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3/2
tt, = ) = (=t hy¥3 Ly moyyan

b(tc) a 372 b(ta) .

The next step is to obtain an approximate result for the
integral in (1.2.4,7). Clearly, the only values of 0‘ which
correspond to a long transition time are near the value (37 « eoc).
Therefore 2osé/2 can be expanded about ¢ = 3Ir, Prom (1,2,13), the
transition time is rougly proportional to (In|&s(t)+/248 + €24 (t) ]2/3,
so that the integrand does tand to vanish if b{t) increases
indefinitely. Since t change much more slowly than ¢ for ¢ not too
near 3n - “c' we can approximate b(t) by its initial value b(ta).

The spproximate solution for p: (oc) is:
pite) & - fl—”—%ll tean - 0216002, 1.2.10)

By contruction, 3w - ¢, > 60‘_,, implying that p (¢ ) is imaginary.

60° can be eliminated using (1.2.15). folving for (3w = 01),

- ,Sa

Br-0) " typ+ ) . (1.2.19)

12,8, . z;’z—n

L]

Por large values of a, the set of values of 0‘ which lead to a long
transition time is exponentially small compared to the full range
of 01. The ahove result agrees qualitatively with Best {1968)
although he appears to calculate s quite different parameter not
nearly so well related to the initial coaditions. Pnyway, the

important result is that the transition integral is well defined s
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[60™), 4]

(2)
1 7!”/\91; o ¢

o 7 3r S

PIGURE 1.2.3a

*2
Diagram of ¢° versus ¢ for equation 1.2.20 where b ig constant,
(1) A value of H such that ¢ is, at some time t*, a rotating

variable. (2} A value of N for which ¢ librates.

v o 2 A
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except for initial values very close to the sticking motion. PBut
the functional approximation used for the integrand is only good to
Nlblllz ‘%%L). Therefore, we can effectively ignore those 01 which
have a long transition time, if all that is desired is a solution to
the integral accurate to first order, Cf course, ir any real
physical system governad by (1,2.1), there are arbitrary
fluctuations which would effectlvely elinlnate the peosibility of a
sticking motfon and inhibit traneitions which take an axceptionally
long time.

A system more nearly related to the problew vt +-rd ia that of
a ~endulum subject to a constant applied torque, g—i- « The

Hamiltonian in this case {s

Hip,#,t) = 1/2 p° + blr coss + 54, (1.2.20)

dc
We shall choose at

initially executes positive rotations it will te slowed down by the

to be positive such that if the pendulum

torque, and 6 will eventually reverse sign. For the special case
where b(t) = const., E(p,é,t) is a constant of the motion. Fiqure
1.2.3a is a graph of 52 versus ¢ for 1) a value of H such that ¢ is,
at some time, a rotating variable, and 2} a value of H for which
librates. 1In the first case, the graph reveals that the path of
motion of ; into zero is the same path it follows away from zero.
Transition from rou‘tion into libration cannot occur, except for
the singular event of a sticking motion. Obviously, if capture is

to occur, a non~time-symmetric term must be included in the: -
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A Hamiltonian. FPigure 1.2,3b shews how such a term breaks the time
<£2 symmetry, From the previous gxample we can deduce that §f :-% is
constant, Ib(t)! must be an increasing function of the time for
capture to occur (a'so sees Sinclair, 1972), Alco, we except that

the criteria for capture wi.l depend on the torque, the function bit),
its derivative, and on the initial conditions, Incidently, in spin-
orbit coupling, the time symmetry of (1.2.20) is broken by a

velocity dependent toroue (see Goldreich and Peale, 1966, and
3.1.10-17).

The above Hamjltonian lacks the simplicity necessarv to express

¢ as a function of p., Fortunately it can be transformed tc a new

Hamiltonian ¥(x,4,t) which har the requisita simplicity, definod Lty
(cf, 2.9.12):

Hix,4,t) » 1/2(x + c(t))? + biticons, Q.2.21a)

PIGURE 1.,2.3b where

Diagram of ¢° versus ¢ for a pendulun-like system, subject to xsclt) mp, clt) = !t o 4
r dt *

¢

o

a torque, which iy asymmetric in time, Qi is the kinetic energy of

8 pendulum as it goes rver the top for the last time, while Mi is and

the maximum possible value. 632 is the kinetic snergy after it has
£ . Mo pieraing, b

reve~sed direction and again approached the top. Capture occu - at ¢

02 02
12 80° > ¢l a 3
i L ) QR

Ty il SR e
g.’%-?-:--gl:-coso-rg%u*c). a

Rowayriaen s ts  ~ 8% 41F viawoe o
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The value of c¢(t) can be chosen such that ; = «c in the absence of
the pendulum force. The variable x then represents a fluctuation-ian
3 caused by the pendulum force.

Fer c () and b(t) constant, the turning points in the motion of
x occur at ¢ = mod (%), mod(2v), and we can solve for x as a function
of t, as was done foi the simple pendnlum:

dx sign{-b sing) -
t =ty (1.2.22)
%o Rx)

REx) = b2 ~(H - 1/2x + )27,

Again, the quartic polynamial Ri{x) can be Jactored in terns of its
four roots, and the four roots uniquely labeied by the values of ¢
and sign{-4) for x equal to that root, Allowing ¢ and@ b to be time
dependent does not change this situation in the rotatlon phase,
since the maximum and minimus of x still occur at mod(w) or mod(2m),

These roots are

x ., = ~clt) /200 + b(t)) (1,2.23a)
Xypy = o (t) /78 - b(t)). »)

The equations of motion for each of the roots are cbtained in
a manner analogous to that used sarlier fox the simple pendulun,
except that the roots are dependent on three variables: c(t), b(),

and Hix,¢,t). The eyuations are

29

ax de, X " ¥ps db 1 + cosy

T RwS T Mt S (1.2.242)
nt L.£ 4

X 2nt o -‘-‘-(-——————Tx Tl &b Lo com,

4t dtx,_,“+c(t dt Xons * € ‘ b

The denominators are .gqual t> the value of (-4) evaluated at x =
root. The equations differ from thos Jerived for the siwmple pendulum
in the first “erm. Like those squations, the motion of the roots

or X ® X%

is stationary whenever x = X s 2r

sand b= wor p =27,
respoctively. As refore, the w-roots lie interior to the 2n-roots,
Unlike those equations, however, the roots are not symmetric about
the origin but about (~c{t)). Also, the motion of each rair of =
and 27 roots is equal in magnitude and opposite in direction about
this moving put. ¢ (-c(t)) (see 1,2,23).

Let's chooss x to move between x _ and Xy (positive
rotation) If we ignore the second cerm in sach ecuation, then . _
moves toward the right and *one towards the left, implying that the
fluctuation, &x (Def: &x = Xoax ~ xmtn)' qrows as the system
approaches transition. The other pair of roots, besides separating,
has a secular motion towards the left of 0(:—:) (see figure 1.2.4},

The transition phase begins, as before, when the two v-roots

coincide at time t, and thereafter become complex. The evuations of

i
motion for the w-roots could be separated into their real and
imaginary parts, hut ¢his procedure can be circwivented here by

observing that ey + c goes to 2rro as H => ~b(t) and then becomes
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A
-cft) H
- — = - — .).:
¢ —= ! —
x X, >
v - Xere X2are

PIGURE 1.2.4 POSITIVE ROTATION PHASE

Tw arrows indicate the relative velocity of each root.

n

imaginary (see 1.2.23a), Thus tlw real and imaginary parts obey the

equations:
X+=Rex+iImx, Y (1,2,25a)
Re x , = ~c(t), b)
172 -g; Imzxﬂ - ::_:"‘ - Re xﬂ:)—g{’-l.\ + cosd) ., c)

We should ncte that if x is complex, “hen Im x is real and mzx [ 1]
positive definite.

The related integral which determines the value of Im % at

time . when x makes the second coincidence with Re x is

2 -rt, da
1/2 I (£) = “[°f atg2ix - Re x ) -

ty
f°f aeg2(1 + cosd) . 0.2.26)
ty

Prom the previous example we expect that if mzxw(!) is positive
definite, then the n-roots are still imaginary at tiwe t, and 5
reverses msign, implying transition into libration has occurred. But
1f I (£) is negative, it implies that the m-roots returned to the
rea) axis before x reached Re x frrm the right, and the pendulum
executes naegative rotations. Therefore Im x(f) = O corresponds to
the sticking motion: (é => O=) which separates the transition into
the libration phame from the transition into the negative rotation

phase. Note that this occurs after the first gign reversal of ¢ in
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which ¢ => 0+, This condition (that Im x(£) vanish) is not completaly
accurate as shall presently be demonstrated. The important point tu
make here is that the above relation can still be used to find to
lowest order the critical initial angle § ie which leads to this
sticking motion.

The description of the transition phase is more cowmplex than
that defined earlier (figure 1.2.2), Ti.a important ques-ion to
resolve is the relative motion of x with respect to Re x, for the
period of time that the m-roots are camplex., We should keep in mind
that the major goal is to define the appropriate “"transition
integral® wvhich can be approximated to first order in the small
parameters. There are two small paraweters in this system ;!
pendulum plus constant torque: 1} the first parameter is the ratio of

the constant torque to the maximm pendulum torque and is small if

-l & :
Bt L)« 1.2.27a)

2) the second parameter is the ratic of the relative change in b of

-1/2 ar

a(d K) to the initial value b(ti), and is small if

jp3/2 %I << 1. b)

Since the equation of motion of Im 13 is already first order in
these mmall parameters, we expact that the motion of x and ¢ can be
replaced by their zerco-order motion in calculating the transition
integral. PFquivalently, the transition phase can be replaced by its

lowest order aprreximation in defining the appropriate integral.

Pl B, TR o - -
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The meaning of this sta t shall b vlearer as we proceed,

The relative motion of x during transition can be discovered
from the simpler case where b{t) is constant. PFPirst of all, the
explicit tirme dependence of H(x,$,t) can be derived and is (from

1,2.21¢c,d):
H(x,¢,t) = const, =~ :—:- ¢. a.2,28)

The constant in this equation can be chose sich that the argument
of the radical in (1.2.23a) for the w-roots wvanishes when ¢ = oi.
The resulting equation for the neroots is;

S
X , = -at (+2K) (Oi -4, Q1,2.29)

and the w-roots become complex for ¢ » ’1' The minimuw initial
angle is mod (v) and shall be chosen for this discussion to equal =,
The initial angular velocity ;i must be £ 07 otherwise ; would have
previously vanished and reversed sign. Also, if 5 vanishes at the
moment the ®-roots coincide, then 01 must be equal to ®. Unless
°1 = 1, the angle ¢ must increase for ¢ > ti until ¢ reaches a
maximum %' at which time o vanishes, and ¢ thereafter decreases,
Eventually ¢ returns to the value 0‘ at a later time tj and the
n-roots are thereafter rui. From (fig. 1.2,3a), we find that when
¢ returns to the value 0‘, ;2 also returns to its initial value ei
In the complex x~plane, 0 vanighes when x = Re Xy and reverses

sign as x moves to the right of Re x. After x moves to the right
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Qepbr)

of Re X . ¢ decreases, We ses that once $ returns to the value 91.

x is still to the right of re =, since ¢ < 0, and the motion of x is

trapped between v+ and 2w+ and has antered the negative rotation
phase. This scquence neglects the possibility of a sticking motion,

Exactly how this motion of X would appear in the complex plane v ieE ”

depends on the relative magnitude and direction of the pendulum

torque at ¢ = 01 as compared to the constant appllied torque, The
a) Disgram of stationary rositions
relative motion of x with respect to Re x_ for the time interval
v of "physical™ pendulum.

t, S tS ¢, when x is comnlex, is found from the equation of

i 3
motion of e -h variable, x and Re x4 Pere
d Re x Xeve
ax bl de
at = «b sgind; T3 - - -dT . - (1.2,30}
R X24rs %o R2ere
The two velocities (and the two torques!) are equal for angles | 9
00(-1) and 0°(-21) given by the relation Xer.
-1 dc .
sinoo b 3 (1.2.31)
b) Equivalent picture of c) Equivalent picture of stable
Clearly |b! 95| 5 1 for these angles to exist. Purthermore, the
at unstable stationary stationary solution. 00(27)
two stationary solutions (§ = constant) of the system correspond to
solution in complex x~ is -27 such that cosoo S 41,

these two anyles, Figure 1.2.5a is a "physical® picture of these
plane. ao(n) is near

two stationarv solutions, while figures 1.2.5b,c are their equivalent
such that cosoo 8 -1,

veyresentations in the complex x~plane. Incidently, the distance
presen P ¥ PIGURE 1.2.5

of each of the roots from re x" in figures 1.2.5b,c is obtained

Location of statio solutions of simple pendulun plus toroue.
fram (1.2.23), and ation o nary

Ho - bcoloo.

O
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Purthermore, from (1.2,30-21), the relative motion of x is towards

%, it
ax(ty . a Rnxu
at at ‘

and towards Re x otherwise.

Careful congideration of these facts reveals that there are two
qualitatively distinct “"transition phases" involving the motion of
the r-roots ard the variaple x. Figure 1.2.6a shows the relative
motion of x during transition for the case where 01 > ‘o' along
with the equ.ivalent picture for the real pendulum., This diagram is
very similar to the trans‘tion phase of a simple time-dependent
pendulum without an applied torque (figure 1.2.2). On the other
hand, if ‘i lies in the range ¢ = 01 s 00, then figure 1.2.6b is a
picture of the motion during transition., The naxt question is,
which of these diagrams is important?

From (1.2.29), Imzx' {¢) is most positive when ¢ reaches ita
maxisun value at ¢ = ‘c and 0 vanighes. Since H = bcosoc when 0

vanishes, mzx" (oc) is also given by
2
Imx, () = 2]b| {eose_ + 1).
Thus 01 and ’c are related by (1.2.29):
da
M lbl(coaoc + 1), {1.2.32)

The sticking motion 8 => 0+ must correspond to a motion described
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a) Rere the {nitial anale oi lies in the range
¢, s $ £ 3an. The diagram on the left is a
description of transition in the corplex x-
plane, while the diagram on the right is the
equivs lent description of th. motion of a

physical penduluu.
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b) In these diagrams, 01 lies in the range

s &y s 00(1').

FIGURE 1.2.6

TRANSITION PHASF. FOR PENCULIM PLUS TORQUE

WFERE b = CONSTANT
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by figure 1.2.6b, in which the initial angle 01 (sticking) lies in
the range » < 01 = 0°(t)- Otherwise, the pendulum has not just
passed over the top prior to the coincidence of the m-roots. Recall
that Oo(') "is the unstable equilibrium position. Since the right
hand side of (1.2.32) is a maximum for ‘c - OO(R), it follows that
the maxipum amount of the weroots can move cff the real axis for

the set of transitions defined by figure 1 2.6b is given by the

> £, mciee.) ta of o(pp7t 2

sticking motion. Since ‘o
and is effectively seconu order in the small parameter associated
vith 32 . But the maximm posaible valus of - 6;) is 2, which
correspends to .. motion given by figure 1.2.6a. The maximum of
nazx is therefore of D(:—:) . |

This sungests that the followiry  roxinations be employed to
find the first order motion lin b -l d—c) of the m-roots: 1) neglect
transitions imolving figure 1.2.6b for which 0‘ is in range
L * = 8, since this set of motions are of second order; 2) for
the case :—: # 0, approximate the sticking motion where ; => 0- {(and
x = Re x by the condition that Im x = 0 when x = Re x, 1 3) neglect
any effect connected with exceptionally loag transition times. With
these approximations, the description of the transition phase for
the system of pendulum plus torque reduces to that for the simple
pendulun {see figure 1.2.2).

The next stsp is to find the first order approximation to each

integral in (1.2.26). For the irst integrand, x + a equals (-5).
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p¢ 4 ‘a’? = constant, tren

-[‘i dt—-(x -Rex) = *E“f 'RE (1.2.33)
L lies in the range n ¢ £ 37 while P equals 37 to lowest oider.
Also, the contribution to !mzx (£) frem the fivst intcgTal tends to
be negative definite.

The lowest order approximation to the second integral is

identical to hat fownd for the simple pendulum (1.2.17) and is

-1/2 dh |adcos ¢/2|
!o $¢53",3"z.zq,)

'-1/2 db

-2]b Feid + stné /), 1.2.34)

Thus the critical initial angle ‘h.' which separates transition into

libration from escape into neqative rotation satisfies the relation
8¢ 13y - - + sing, /2) O (1.2.33)
at (3% olc) 2) ¢1‘_

to first order. Capture into libratir ° occurs f..x °1 in the range
s 0! s oic' since the first integra) ptopo:;‘onal to g—c— is
smaller than the second integral proportional teo d_‘ for 6 in this
range. On the other hand, if ¢, lies in the range ¢, = 4 £ 3w,
¢hen the pendulum has esce~~d into .he negative rotation phagse. If
¢, as deternined Fy i1.2.35), is greater than in. the implication
is that the perdulum will inevitably enter the libration phase,

independent of the initis~l conditions.
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Often it happens that the & s )1 is unknown. In such an
instance, a more valuable “col would be » function which Jescribes
the probanility that capture into libre~ion will occur, given

probability densities for the initial argle ‘i of the system. The

most physically r ble asnig of pr-t .ii1 y .8 the following:
If we reasure the vajues of ¢ an? tar from transition (¢ + - =),
then for a fixed value ~* ;(-') the angle ¢(~=) would be equally
distributed ir e range §* 5 $(-=) £ ¢* 4+ 27, where ¢* ig

arritra-; . T"Infortumnately, it is not clear how this statement
trinslates in definiag the probsbility associated with a given valud
of ‘1 at transition. For the special case b = constant, the
translation is that 01 is equally cistributed in * age

s 0‘ = 3w,

Another parameter which ca. ke assumed to be equally distributed
in some closed range for this case is the value of 32 as the
nendulum moves over the top for the last time. Both Goldreich and
Pesle (1966) and Sinciair (1972) adopt this dufinition of
peobability in th - respective studies in which the tine 3yr - try
1s oroken, in the former case by a velocity-dependent torque, and

in the latter case by a time-dependent coefficient b(t). This

second case exactly correspond- to th- ple being dis.ussed.

Sinze 1t ig always desirable to make cortact with others' results,
this definition of probability density will be adopted here.

Prom figure 1.2.3b, :he value of 62 durip the last passage of
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the pendulun over the top bafore ; reverses sign is ;i and is
equally distributed between 0 and A;z, where 652 is the maximum
posrnible value of &f In order to define Asz, we had to analytically
continue the graph of ;2 versus ¢ to nejative values of 52 {dashed
line). Thus Aza is the difference in 32 betwee~. successive minima.
The value 62; is the decrease in the kinetic energy over one
revolution as measured at the top, caused by the term which breaks

the time-symmetry. Capture just occurs it

2
-

.2 22
¢1 ol(oic) = 847,

Therefore, the probability of capture (Pc) is

«2

2,y a2
P = 12“: .i?.Z. . (1.2.36)
€ M 84

The next step is to relate mzaw, eviluated between ~pp.opriate
limits, to each of he guantities appearing in (1.2.36). In order
to accomplish this, the meaning of negative values of ;2, implied by
the continuation of the graph below the ¢-sxis, must be explained.

The quantity

22 .32 _ 412
4, = 4] - 4

is a measure of the decrease in the kinetic er.-gy below the value
-aro as measured from near the top. But og, to lowest order, equals

#»”{n), which equals:

$2n x + o).
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At coliciaence of the x, roots, ;(r) vanishes and is tharsafter

imajin-ry. Therefore

M °2 2 2
2 certeen (0T {1.2.37
i
-3 R
& c° “ed Wy letting 0: vanish. Thus, the ma)imen chang:
in Im . “and 19 obtained by eviluating unzx' betwean tha
1imies A 2w (where ¢ + 04)
, 2003 42 a1y 1-3/2 4D
1,2 A | sangs a'p| it 1.2,30)

Q:lo‘c) equals th~ ° ximum decreass in xuzx, minus the decrease

2
Im '-“Ac)’ or

3"

"o {1.2.29)

L 2 2. 4w 2
i el ) " /2 m % 107 - 1/2 1%

¢
dc ~-1/2 4b J¢-]
- 3‘:'(3' - .ic’ - 2] ;\T"l + ﬂn(—;—n-

Usiny (1.2.3%) to eliminate the explicit lependence on 0“, the

protability is

2
v (1.2,47)
dt)(lbl

Yo YT Y

1 -n/z:!b]" Ty

Pc is zero if :—bt- = N, while Pc approaches ita maximum value of w.aty

whan the ratio of the small r.rameters of the systen is of C{l),
Also, it should be puirted out that the alove formula does rot apply

to the s :ciczl case :TE = 0 since (1.2.38) is then invalid. T™n
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section 3,1 we shal) i1 nd that tha estimate - of _apture probebility
for possikle resonance assoclated with the Pimas-Tethys
comnensurability agres vith the numerical calculatiors of Binclair,
fefore concluding vhis discussion, thera {a ona mrre interesting
feazure wu shall inventigata, related to transitic) from the
positive rotat.on into the neyative rotation phase, ant it s
demuribed by the following: If we look a* the s wters of pendulum
plus torque far from trensition, at approximetsly equal tire inter~
vals tafore and afier tranaition, wa observe that thare (8 a
sscular change in the ™san value of x, u:. equivalently, in the
mean salum of 4. That is, if we measurs the mean value of ‘ in the
pugitive rotation ghase far from transitjon and find that (¢t im
aqial to, say, (-c\‘t.)) at time t‘ {where tl »> =®=), then the result
of performing s imrlar measurement in the negative rotation phase

at tire tb {where o~ =) shall be:

(o)“.’.rot. & -ax mely ),

whare Ax is this secular changs. The value of Ax can bhe determined

ueing 1) the actlon integral and 2) the condition <‘“l,)p°l.l'°t- -

-c(t.). The time average of 0 at time c‘ in

y ol ftnecrar A i -elt),
(0(2.))’“.“‘. T ponm.rot, S

1.2.40)

Mpplying the second condition, we find
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(x(:‘))m._mt_ - 0. 0.2.42)

As the mean angular velocity dscreases and the syistem approaches
tran.ition, {x) tends to increase and move toward the %, -rost. This
is a consecquence of the tact that the system tends to spend more
time near the top or w pisition of the pendulum motion. At
transition, the mear. value of x is - Re L

The naxt step is to evaluate th. action integral J in the

positive i1ntation phase far from transition:

%4 = § xHit. 11.2.43)

Jpo..rot. = ?pl.rot. pos.zot,

Since the flucturatinis in 0 tenu to vanish the further the system
is from transition, 0 is approximately constant, and JpOI.tot.
vanishes since it 's anproximately proportional to (x).

The action intsgral {s an adiabatic constant (Born, 192%) in
each phage, as long as the instantaneous frecuency of the pendulun
is large compared to the slow charges in the system induced by the
torgue g—:— and the time-dependent coefficient b(t). 1In the examples
being discussed, the rastriction is violated only when the m-roots
are so clcae that the {nstantaneos frequency is very small. Recall
that the instantanecus frequency for the first example tended to
hlow up logari<hmically as a funciion of the w-root separation. In
addition, we have found that the roots do not move very much during
transition except for the situation vhers the transition time is

axcoptionally long. Furthermore, the instantaneous frequency
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rapidly increases for small changes in tha relative separation of
the rerocts. Therefore J can be calculated at transition to determ.ne
the sscular charae in the time~dependent functions. At tims

ti' N1 - b(ti) and J im

2 2%, . o e
Ioa.ror. = 0" }o x34 = ]o (=9)d¢ = 2nalt,)

s wa]bre 12 [ )con 4s2) - 20ete)), (1.2.44)

ot * -Bib(t‘ﬂl/z - 2me(e,) 8o

"po-.rot.

After the pendulum das made the transition into negative

rotation at tiwme t!, J can again be calculated.

3" 1e = [2 (4184 - . .2.45
I ag.tot, = [y w4 = [ =414 = 2nciey) 0 )

Unless e! - ti is axceptionally large, c(ti) L c(tt), and

b(t*\ L] b(t!) L3 H(tgl. The result is

1/2
) ~ 2nc (e {1.2,46)
7 eg.rot. " ¢8|btti,] 2me (o),

and anﬂ.tot. is nonzero., Par from transition, the mean value of x
tends to Ax in the negative rotation phase, and the value of

4 274x, Thus
Jnog.rot. corresponds to

8 ir2 1.2.47)
ax & N’“t’l . (

Por a simnle pendulum, (-4x) corresponds to the delay in the
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evolution of (¢) by the pendulum potential Cue to the conatant applied

torque. In the orbit-orbit interaction, the variable x is related to
fluctuations in the orbital elements a,e, and I (sea section 2.1).
This means that there is a secular change in the orbital elements
associated with passage through resonance, not entir ly coanected to
the tidal interaction.

The purpose of this investigation has been to develop a
description of transition along with some analytical tools which
shall prove useful when applied to the Hamiltonian governinj the
orbit-orbit interaction. Before we proceed to discuss transition
for the orbit-orbit case, the Hamiltonian ‘hich approximates this

interaction will be derived.
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2. NEWTONIAN THEORY FOR PLANETARY SYSTINS

The developmert of a one~dimensional Hamiltonian cornsunes more
pages than anynne in his right mind would want to read. This
exercise is, for thr most part, & rehashina of old material to make
it suit our own purposes, and breaks down into four stayes. First
{s the formulation of the many-body planetary problem in terms of a
disturbing function, acting on each planat, vhich is distinct from
the more common potential function. In the planetary problam, the
principal interaction of the planets is wi a the pun, and is the
major factor in determining their orbits. The planet-planet (or
satellite-satsllite) interaction can e daveloped as a perturbation
on the two-body pl.iet-sun or satellits-planet orbit. Instead of
considering perturbations on the coordinates, it is pore useful to
£ind the perturbations of the two-body "constants” of the motion.

The serond stage is the expansion of the disturbing function
in terms of the Kepleiian elaments of the two-body orbit. It is
amazing that the resulting expansion is of any use since it is so
complex, but useful approximations can be rore readily irvoked with
the disturbing function in this form. The terms in the expansion are
classified, and the relative importance of each cliss im discussec.
We determine the restrictions which must be iwposcd on these
clasacs such that a single hypothetical resonance varjiatle will

dominate the long-term behavior of the syastem. RAlso, a procedure is



49

outlined for the analytic elimination of the short-period terma order
by order in powers of a "small” expansion paramveter. This serves
two purposes. Pirst, it explicitly shows that the effa:t of such -
terms on the resonance is of seco.l order. We see that these terms
have 2 minor influence on tha two-body rescnances discussed later in
{4.1); on the other hand, in the lunar resonance problem ..scussed
in (4.7) the second-order mixing of short-period terms is important,
because the sun can be a substantial indirect participant in the
moon-earth-planet resonance. Second, we see that the terms in the
expansion which look like a sum of pendulum-like potentials, all
with different angses, is not entirely an accident of the expansion
prccedure -~ a libration of one of these arjles is lmplicltlv
possible.

Once satisfied that the criginal interaction can be reduced to
vne which involves only one angle variable, we then show that the
system of equations can be reduced, in most cases, to a single
canonical set {x,$}. The method used is similar to the first step
in Delauney's solut:on to the sun-moon interaction {Brown 1960, p.
140). Tnhe Hamiltonian derived is a constant of the motion in the
absence of any dissipative tidal interactions.

Our lac*® act is to interject the ti.as irto the tide-free
Hamiltonian just developed. Essent,ally this is accomplished by
subtrac’ ing out the secula effect on the canonical variables.
Pinally, we surmarize the resul®s in (2.1C) Also, the relation

between cur Hamiltoniar and the s¢.ond-orde. oquation of motion
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derived independently by Allan and Binclair is discussed, to Srst:ll
confidence that no serious flaws exist between beginring and e~d.
The beginning, of course, is Newton's laws of gravitation.

The gravitational force bhetween two bodies Jeperds on their
mass, shape, and the distance between them. Most celestial bodlies
approach sphericity, allowing the gravitational force to be
approximated by that between two point masses. Given a4 set of n
interacting point masses, the forces acting on the i'th body are

additive and individually dorivable from a potentials

8%
;-m——i--mVV‘, (2.1.1)
i d«’ 14
where 31 operates on the coordinates of "1 and the potential V‘ is
n
]
vie- 1,y ea . (2.1.2)
Ik Fyy 3 »

For two bodi+ the path of motion each describes is a conic
sect .on, either an ellipr~, a hyperbola or a paralola. If the system
is bound, thes shape and size of the ellipse are specified by its
eccantricity » and semimajor axis a. Its orientation . resrect
to a reference frame Ls given y the Puler an les 2, I, w {cf, t.
2.1.1). These symbols and their 3 finitions ar. peculiar to
astrur~omy., £ is the "Jongitude of th. ascending - "(,” w i8 t.2
“argument of pericenter,” whereas 1 is the "inclipation". Although
not a pr iical angle, another frequantly used "broken angle” is

@, defined by
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(2.1,3)

and called the "longitude of pericenter”.

The position of a body on this ellipse, with respect to the

pericenter, can be specified by its tr.as anomaly £, eccentric anomaly

B (2ig, 2.1.2), or mean anomaly M.

the distance r by

reall -e* cosB)

2
- a{) ~ o)

lLeeo cosf
The mean anomaly is defined k-

Men{t -7) «aE=e@" zus k.

The anyles E and £ are related to

{2.1.4a)

b)

{2,1.5)

In most analytical work, M is the most useful ancmaly, since it is a

linear function of "he time in the absence of perturbations. The

element 7 i{s the time of perihelion pagsage and is the sixth constant

which fully specifies the two-body system. Instead of 1, arother

choice for the sixth constant is

nT e e -

» the epoch, which i{s defined by

(2.1.¢

The constant n is the "mean motion" and is related to the semimajor

axis by

23
uo-G(n°+m)-na,

(2.1.7)

which is recognized as Kepler's Third Law.

The general problem of three interacting bodies is stil. unsolved,
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In a planetary system, one body is much more massive than any of the
others, predominantly determining the path of motion of all the other
bodies. This fact suggests that a zero-order solution for each
secondary mass would be an ellipse whose focus is at the center of
mans of the two-bxly system (primary and secomlary), the mutual
interactions between the secondaries beire ignorad. The effect of
the secondary interactions can be developed as perturbations on the
zero-order ellipse, in which the six constants just described
{a,e,1,6,0,0} become variables. The method is known as "the
variation of arbitrary constants® (Brouwer and Clemence, 196la, pp.
273-307). The six differential equations of the elements are first
order in time, compared to the three equations of the coordinates,
which are seccmd order.

The first step towards a solution is to expard the potentisl
function (2.1.1) in terms of the orbital elements ¢f the i'th
disturbed body and the other n-2 disturbing bodies. To accomplish
this goal, it is convenient to choose the primary mass as the
coordinate origin and subtract the motion of the primary uno) caused
by the disturbing mass. The result of such an operatiun is the

equation of motion of the relative position vector ;11

2&
4 oo =i

2ovvc,-o‘llz . {2.1.va)
dt

where it is understoud that ; - ;

i i
s 1o° The two functions V° and R

are:

m m
v: -ado : 1)G b)
i
n ET
Rt . SR;-i o - Ay, )
31 LR B LY

R; is known as the disturbing function of tie {'th body dus to the

action of the j'th body, and has the opposite sign from that
commonly assigned a potential function. Its parts are called the
Direct and Indirect terms respectively. In the absence of anry
disturbing body except the primary, R1 = 0 and (2.1.8a) demcribes the
motion of the {'th mass with respect to the center of mass of the

two-body system.
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2.2 ANALYTICAL DEVELOPMENT OF iHF DISTURBING FUNCTION

The disturbing function acting on an; given secondary is the
sur of th.' indivilual disturbing functions due to other secondaries.
These may be other satellites, planets, or even the sun itself if the
given secondary be a "moon” of a planet, Our primary concerr is to
understand the two-budy satellite-satellite resonances of Saturn in
which the inmportant perturbations involve a single two-body inter-
action between the partners of the resonance. The critical
develorment involves tha expansior of A-l - ‘;1 - ;2|-1. The
inverse separation, 2t in terms of Tye Ty and , the angle between

rl and rz. is

-1 v 1 Fen
& -zgo ?;‘Z’ Py icos ©), (2.2.1)

(Jackson, 1962,p. 62), where r, is the greater and r_ is the lesser

of r, and r,. 1f the orbits are coplanar, © is the difference in

true logitudes of ;1 and ;2

Se1, -1 {2.2.2a)
vhere
LEf+au+0=f+D, b)

if the orbits are also circular, then @ reduces to & = Y

where A is called the "mean longitude” and is defined by

Ao i e P ST 2 s
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AEM+ B, (2.2.3)

In general, orbits are not coplanar and the relationship of B to the
Buler angles is much more complicated.

The next ster is to perform the spherical harmonic expansion of

the Legendre polynomical to relate the vectcrs ;1 and ;2 to a common

reference frame (ibid.; through their spharical coordinates (r,6,4}

(£ig., 2.2.1):
an +L
Pylcos ) = T . z o 500,080, (8,,6,) (2.2.48)
where
- 2 +21 (2 ~m1 imé
Yyn(er®) ﬁ-—-—“ i——u TET Fricosele b)

and the associated Legendre function is defined by

m S +m
P:(x) - -‘—?—(1 - xz)n/z d-—“-; (.xz - 1)2. c)
27481 dax

where the * superscript indicates the complex conjugate operation.
The spherical harmonics can be related to the Fuler angles {0,I.f + u)
through an explicit exparsion in which the trigonometric relations
between (8,4} and {R,1,f + v} are utilized (Xaula, 1966, pp. 30-35).
Another approach is to use the group properties of tha spherical

harmonics under rotations (Iszak, 1964). The results are:
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22 +1 (¢t ~-m1 172
Von (8. 8) = (e e mi’

Nl
| pppnelilt - &) 2 (2.2.50)

pe=o

where
L emn 2 + m)! k, 28 - 3

P, (I =4 SLES ) k! o
tomp 2ot - pat K k
2p 2 -

Iy i - k‘"z Ya¥, b)

y-co:%; u-sin-:v Vemegf+2p+ 2k ie/,

ard k is sumned over all non-negative factorials (cf. Allan, 1967).

The inclination function ?mp has an important symmetry property

which relates the coefficients of angles that differ only in sign:

- iyt (2 - )
T (X} = &) Tsmr Tema - l,(I). 2.2.6)

Therefory, the coefficients of the angle {(f -~ 2p){f + w) + mil} and
its negative are ilentical except for sign. Since (2.2.4a) involves
products products of spherical harmonics with the same £ and m, the
sign of the product of coefficients will be the same for angles

which differ only in sign. The basic properties of F (1) for

imp
ciaall I are

PP oult == - %l (2.2.7a)

aat s e e
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FIGURE 2.2.1

SPHERICAL COORDINATES OF VECTOR ;
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cos (p¥)

© -5, zpmv’:(o) =& 2o

Framp

(2 +m)1 bY
le! t-pt

The firal expansion relatas the true anamaly £ and the distance
r to the mean ancwaly M. From equations (2.2.1), (2.2.4z), and
(2.2.5a) we see that the function which must be expanded is
{:2%xp 3 (t0)). Hansen's coefficients are dafined by the

relation:

D%xp ittt « ] 33 te)ep i tg+ v {2.2.8)
Qe o ’ - - .

The expansion of Hasrsen's coefficlents in a power series in e is
fairly complicated and can be found in Plummer (1960, p. 44). Table
{4.2.1) gives a few typical values to lowest order in e, while more
extensive tabulations are published by Cayley (1961). The basic

properties of xq‘ {e) are
8, t

q - 3
x"‘(e) xs'-t(o) {2.2.9a)
2 o orel 181 = lall, "

X3, (0) = 8 o)

e
Using these expansions (2.2.1, 2.2.4, 2.2.5a, 2.2.8) we find

the direct part of the disturbing function R; (2.1.8) to be

AR PR DR R B 50 i

a 4  Jle+m)t

L 1 (asysfd-m)! sp . .
Rip= 5 = o B 2,3 PN CLAESY
(2.2,10)

*q.°2" o hray-¢ 1A,
X x LT o i
W Aber I

tla,

Pmg pgg A7270) Ky )= (52290 (g 20 ey - 5)

*13F1- 90N

This expansion can be reduced to a cosine series from the symmetry
relations (2.2.7, 2.2.9).

The expanmion of the indirect part of R is, fram (2.1.8),

"

e L @ {2.13.11
Ry B - V3 cos® a)
r
2
a
1 (1 ~mi
e-u—= I By (1,08, (1)
zag ",p.q (1 +m! "lmp g,
l+q - 2p; 1 +qgy - 2p;
X1,¢ < 23 tedx_p 572 2p, {eq)

oitimpypoayas ¢
and the sums are restricted to the tarms whare

t=1 m=1{-1,0,1} PPy = {o,1} 12.2.11b)
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The qualitative dependence of n; for amall e ani I can be deduced

from (2.1.6) and {2.1.8). Formaily, x; is
1 '}
o=t %2 t-m-2pl Item-2p) lgl la
2§ ey 1o, 2‘01 1e2I 2|

0% tmp. 0,9, 9, (2.2.12)

a
whee C is a series in 12, e2 and a « :‘-, and i formally presented
>

by:

o4
o M1,2%,2
0

" 18

2\!1 2\'2
uqlfuqzluz e ‘e, c. (2.2.13)

The restriction on the sums in (2.2.13) are that L - 2p, m and q are

constant (i.e. i
m( ¢ »p, P1P29, 42

order o i", where £ n is the smallest value of £ consistent with

8 fixed). The leading term is of

3¢
rthe arqument of the cosine and the range of values for £ and p.
Terms in C which contain e or I are at least of order 02 or 12
smaller than the leading terms which only contain factors of a.
The important point, which will be demr'nstrated later (2.6,10,11),
is that any variation in C (due %o a variation of the orbital
parameters) is of 0(02 or 12) smaller than the correspoidding

variation of the leading factors. This implies that the

variation of C with respect to X can be negler *~. [ (. “runly,

PRI 1Y '“»; e i el VR et «
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the secular term of the disturbing function is a polynomial series
in powers of a, 12 and e2, and this term has no leading factors of

eor I.

1
2

of the orbital parameters, and would not be ver useful if it were

Obviously, the expansion of R, is a very complicated function
mt the case that the perturbations produced by the disturbing
body are swall, and, furthermore, that the major portion of the
variation of the factor multiplying the coasine function is
determined by the leading factors of e and I, as demonstrated in
{2.6.1.2).

The expansion as outlined does have one defect. For the

a
satellite-satellite interaction (or planet-planet) the ratio (-ai)

>
18 not much different from one. Instead of expanding A-J ueing
{2.2.1), we can expand it directly in a coiine series in 2. The

result of this operation is

-1 ¥y T
4" - b ® -—, 2.2.14
T, V2 , 2—_. Y A LR L (2.2.14a)
and the lLaplace coefficient bi,z(a) is obtained from the integral

3 r, ces i) © a6
b1/2(°) - kj T ! [x‘:r+ rf - 2r>r>cou'!9 ! Kj

«) - 1728

3.0
b)

The drawback with tl;is approach is that Y is a complicated

function of the Euler angles, and a is a function of the mean

anomalies. Subsequent ewpansicns which reduce the disturbing
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functions to a function of the elements {a,e,I; 1,8,8) comprise a
very tedious exercise, as anyone familiar with the topic well knows
{cf. Plumer, 1960, pp. 133-48). The resulting expression is formally
identical to the expansion given by (2.2.12,13) in that the leading
factors of @ and I in any given term ~an be factored out and the
remaining sum of terms can be lumped trigether as the coefficient C.
The only difference would be that C is not a power series in a, Iz
and .2' but a geries in which the sum over a is expressed as
functions of Laplace coefficilents.

The first approach outlined is usually reserved for the
expansion ¢ the non-spherical geopotential acting on an artificial
sateliite (cf. Allan, 1967). The ratio E enters in the ex;:anlion
where R is the ez-th's mean radius and a is the semimajor axis of
the satellite, but the prablem of convergence in powers of E-.is
avoided because of the functional dependence on the appropriate
sultipole moment ir each term of the disturbing function. Rapid
convergence of tne expansion is obtained, because the multipole
moments decrease rapidly with the order of the moment.

A mixture of the two procedures can be applied to the
expansion of the disturbing function of a planet acting on the moon,
with a definite reduction in the amount of labor usuaily required
(Brown, 1960, p 252). Higher order Laplace coefficients appear in

the expansion and are defined by

-12 T3
ta,a )™ 172 ] blalexpi (38, 12.2.15a)

==
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The series expansion of bi(a) , which can be used to muwerically
evaluate these coefficients, is given by
Jin) @ 20 T8t ) 2
A P RS VAR U IR »

where the function F(e,s + j, § + 1 uz) is the hypergeometric series

r{s + n)I'(j +1 + n) ozn
Fis ¢+ § + n)

Fis,8 43, 3410 = ]
ne0

(cf. Plummer, 1960, p. 158).

The important point to emphasize is that the formal expansions
of the satellite~satallite interaction, the lunar-planetary inter-
action, and the interaction of an artificial satellite with a non-
cpherical geopotential lsad to similar terms and that the behavior of
these systems near or in a "resonance" where one of these terms
dominates the disturbing function is essentially the same.

The next series of onerations {nvolves the introducticn of a
Hamiltonian whose variables are functions of the orbital elements
rather than of the coordinates and momenta. Eventuslly this
Hamiltonisn is reduced to a single degree of freedom and a constant
of the motion for the tide-free case. To aid this process, let's
discuss the various types of terms in R; and the different types of

resonance variables which can occur.
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2.3 CLASSIFICATION SCHEMES

The art of classification is to impoge an order on a hodgepodge
of nateria.l, be it physical objects or ideas or terms of a disturb~
ing function, using criteria which suggest a neaningful way of
thinking about that material. The {irst scheme presented classifies
these terms using the relative seriod corresponding to the cosine
argqument as the principal criterion. 1Its purpose is to suggest
which kinde of terms can be haniled using standard perturbatic.
technicues and which cannot. Those terms which cannot be removed
mav be i1gnored if they satisfv thes basic criterion that t.hflr
corresponding coefficient o the cosine is much smaller tharn the
coeflicient of the given "rasonant" term. Otherwise the system
ca’.mot be approximated by a Hamiltonian having one degree of freedom.
Incidently, a “resonan:e term” is a term in the expansion of R whose
cosine argument is nearly constant due to special values of the
orbital angyular parameters. This term is distinct from "secular"
terms whose cosine arguments are identically zero. We shall define
a "resonance variable” as “he argqument of such a resonant term.

The Hamiltonian contains an infinite number of terms which may
or may not affect the resonance. A useful classification in treat-
ing the "non-resonant™ terms is the following:

a) Short Period Terms, These are terms which explicitly

contain 3 and have periods on the ocder of (or less than)

[Py P R
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the period of disturbed or disturbing bodies.

b) Long Period Terms. Those terms with arguments which do not
centain A, but do contain & or {1, are in this category. The
largest terms in this class have two powers of e or I in the

coefficient of the cosine.

~

¢) Secular Terms. The secular terms are those for which ¢ = 0.
Only even powers of the e and I occur as factors. If the
Ham.ltonian is reduced to terms of this class, then the
action variablas (defined later) become constants and the
angle variables are linear functions of the time.

There are still terms whose cosine argument is not some multiple of
the resonant angle and which do not belong to any of the classes just
defined but have long periods. They are of two types:

a) Those terms which "almoet™ satisfy the commensurability
condition 31"1 + jznz ~ 0, but which have different jl'jz
than the re-onance variable. If the integer pair is much
larger than the ) es>nant pair, then {ts coefficient will be
much amaller than the resonant coefficient, and for this
reason is ignored. If this is not the case, these terms
must be directly comwpared with the term (or terms) contajning
the resonance variable,

b

~

If an angle differs from the resonant angle by a function of
the slow angle variables & or 2, then the period of that
angle will be of the order of the slow variables near

resonance. They can be neglected if either the ccefficient
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of such terms is much smallar than the resonant term or if
the period of the slow variable is relatively fast compared

to the libration pericd cof the resonance variable.

There are several types of resonance angles which shall ..

discussed in detail. Below is a list of these types, along with a

list of specific examples.

aruhs 3 A

a) Purely Synodic: L - 2p; ,=m  q , = O
’ L4

b

[~

- m(ll - lz). "he Trojan astercids librate about the

Lagrargian triangular points of Jupiter with a resonance
angle of the abov. type (Brown and Shook, 1964, ch. 9).

Unfortunately, the perturbation cxpansion of the type

developed n (2.1) cannot be used for the Trojan reasonance

problem.
)Sanlee'ryperl-zplz-m qz-Op
’
¢ = u(ll ~ lz) + q1"1' Most known resopances fall into this
class. The Enceiadas-Dione (Am - ZADL + wDi)' The
Titan-Hyperion mw - 3)\,“ - Bﬂy). and the RNeptune-Pluto
(axp - 2x“ - BP) resonances are well-known examples. The
leading terms in these tvves of resonances contain a factor
of elq]. Actually, the class of obperved e-types is
restricted to t'e |g| = 1 case.
)Sinploltypequ-qz-m !.-2p2=mr
¢ = (L - 291)(£1 +u1) +‘01 = m)A, . Ther' are no known
examples of this type.

d)m:todxtypqul-qz-ba 0-{(1-2;»1)(!1401)-
(2= 2p e, + wz) +m(a, - nz)). The only example is the
Mimas-Tethys resonance (2114,i - n,m + (zm + n,r').

Other types are the mixed e-type and mixed type whose definitions

are obvious. No natuvally occurring examples belong to either tyve.
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2.4 HAMIL'ON'S EQUATIONS

The Fawiltonian which Qescribes the motion of a disturbed body

can be vrl'tten as

»o+p, L +D
Hetl +2& Ho--1/23-3+° i.x 4

. {2.4.1)

where H, i{s the Hamiltonian of the unperturbed two-body cvster of
primary and secondrry. (Note again that Ho is the negative of its
usual counterpart in ordinary mechanics. Of course, the sign has no
significance except at trsdition.) The canonical elements of H ~re
the conjugate momenta and position coordinates. H is not a con=-
stant of the motion since the coordinates of the disturbing body are
contained explicitly in R. Since Ho supposedly dominates R, the
motion of the disturbed body can be described in terms of the
variat.on of an instantaneous ellipse vhich determines its position
and velocity. The simplest method for deriving a canonical set of
conjugate act‘on and angle varialles is a nethod involvinj the
Hamilton-Jacobi equation (cf. Appendix A‘.

Several sets of canonicai variables have been &- »ived
(Hagihara, 1970, pp. 526-555). The set chosen for this discussion
is known as the modified Delauney variables [i,I,2 ',3,8}. fhe
angle variables "ave already been defined. The action variables are

related to the Keplerian elements by:

70

L= /uoa

p—

*ern(-e-1) (2.4.2)

z-LJ{-ez (cos I - 1)

and we shall adopt the convention that B, rérlaces u  + ¥ in (2.4.1).

The H-J equations in these variables are

dt 3 dt 2L

d
£

g.u o, (2.4.3)

it 9 dt sr
dz M @0 3
at Q dat 3z

The cbove set has the aciantage that Z is an approximate constant of

the motior ¢or -type re.onance, and I' is a constant for an I-t oe.
Also, ir 'rd - gmali, then
< 2
r=- _r2%%; 2%--1/21"L {(2.4.4)

or bo*h I' and 2 sre very small quarntities compared to L.

If R £ 0, then all of th~ variables except A are constants of

motion, From (2.2.3) and (2.4.1-3), the egquation for g—:— is
oH
%--E‘z = n = constant (2 4.5)

and ) is a linear function of time.
The disturbing function coi:tains many terms other than *ae

resopant cerm., It is important that tneir effect on the resorance
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and the meaning of the appze wmntion whezre they are neglected be
understoot. Sonetimes such 4An approximaticn for certain cerms in R
iy unjustified, and a procedurs is outlined which detarmines their
a%fect on the remonan:e.

In the lunar~planetsary res>nance problam, the sun {1 an
Lapo-tan' particijent through a coupling or mixing of shkrt period
tarns ‘n M. Therefore, a method in discussed which succensively
alim nates those rLarms order by order in teimn of & smwal) sxpansion
para-eter. Tha expansion pacamater (or paramoters) in the srtellite~
$3°e.litn case is the mass of the disturbing boly u' (venlly the

» - -]
ratios %—l. The mnss ratio ranges from )0 2 ) 10 7 for satellites

.}
z? tie major planuts. In the lunac-sclar pronlam, the appropriate
jacaneter is the rat:o of the mraan motions of the moon to the serih,
r

;2 , which is of nrdar 1071, Thus the rate of convergence of a

4

conventional perturbation expsrsion in the lunar theory is

ompacatively slow.

2.5 BLININATION (3’ THE SHORT PIRIOD TERMS

"l‘ho axpansion tre disturbing function for two satellites,
developed in section 1.i, cortaius an in‘inity of terme which were
claspified according tn varicus nolexus in section 2.3. If “he
system 19 nesr a commenuuradllili:s, the usual assumption iw that tie
secular term and the given remiiuxie tarn sre relatively more
important than any of thie othesr which oucur «n R. When reetricted
to th's st of terms, the Hamilion.an can be zeduced to » fors very
1ike het of o prndul e (2.7.8), “his reastsi:ted tam:lecrian allows
the ingie veriable to 1ib ste aid the systam %0 uxhibit the property
of reworarcr. One mi et quention vhether this resonance phenomeron
really axints. Terhaps it is just a property of (1) ~he jurticular
expansion which conveniently ex)retsns R s the s\ o7 perndulwr-!ike
potentiale and (2) the given ssurption that one of tiem cduminaten
the motioh over a long time sca.e. We shall try to atlay such doubts.
Alsc, the axpanded disturking £.nction (s nor~lineax in the varius
orkital elements. This non-liniarit~ in P should lead tc a
"ooupling” of ter 1ot directl,; ‘nvoly. - the rarcnanc ¢+, This
indirect effect wmay have the nae frequency am the resons -t term
an? thus change its effective putantial. Therefure, the [rincipal
subject dis-sssed in this sect ion will be this coupling ef fact. To
axpiicitly display the coupling, & procedure sinilar to Brown's

method will be outlined, by which the short period terms in P. can be
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e imirated fron tre Hamiltonian order by orxder in terms of a "small"
eransion parsreter [Brown and Shook, 1964, ch. 6), The coupling
will te@ shosm to le smaller hy a factor of an sxpansion paramster,
although the parameter may bo difZerent from that which occurs
directly in the two-body disturbing function. Next, the conditions
wilch determine whather the procelure can be apglied to the long
pariod terms are ammeratsd. At this stage the Hamiltonian wild
hive been reduced to ths secuiar zerms, texms which contain »
mileiple of the resonance angle, and other ti ms which cannot be
elininated by a perturbation expazsion because their cosine
argunents are very slow functions of time. PFinally, an explicit

¢ tculaticn must e made to see whether the coefficient c’t~ ':ho

rasorance ter' is much larger than the remaining terms. If the

latter terns'’ effaect an the parsrers of the r is camparatively

snall, then they zan bes ignoied.
To reduce the procodure to its esgentials: the disturbing
function ot the firat body will be momentarily ristricted to a

single two-body potantial of the form (frowx 2.2.12)

(T, s I°,w'; ¢t) = u'§ A*(J,J')co-ox. {2.5.1)

and other effects such as those due te the presence of other
satellites, o~hex planets, the sun, and the primary planst's
cblateness will be ignored. The Bubscript notation is here replaced
by primed notation, whece unprimed and priwmad variables refer to the

first and sezond bodies respectively. [,w) is shorthand for any

GEAU A28 & o8 e My Wit A K G e ety v wotee -
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pair of conjugute astion and angl.e variables of the first body. The

above disturbing function can be formally separated into two partss

R-R. onq. {¢.%.,2)

R. shall include the short pericdic terms and Ra &ll the remi.ining

termns, The Hamiltcnian is therefors (2.4.1):

He HO(L) * R. + R: . (2.5.3)

Formally, R' can ba written as

R. - 'z A'U,J')cnlo-, (1.5.4a)

where

LB LR A {function of nodes and
longit de of pericanter}. b)

The mean longitude A is aleo squal to (2.1.6,2.2.)1¢
Awnt+g, (2,5.9)

It follows that the mesn long.itide is an explicit function of its
conjugate action variabhle L. %e make this pcint now to avoid
confusion later on.

The mext step 13 to make » Hami)ton=Jacchi transforma-ion on the
old Hamiltonian H(J,w). with the dewsnd thut the new Hamil:cnisn
generated, H(J,w), doen not conthin the short period terms %o first
order. The transformation fran the old set cof action-angly

vaciables can be accomslished with a generat:)ng furction
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$(3.v J'.w') defined by the relations
Fe23 o) Ty we L) . T, {2,5.6)
- 37
v
whick satisfy the llamilton-lacobl equation
Yy o . ’ . ' . 25 bel ’
I, W J') m HT,wp 3 W') 4 5 3, J°,w") {2.5.7)

A similtaseous zansformation will be made on the action-angle
var:aocles of the srcond body and the cor:espondirg Hamiltonian H',
where R', H', A' and 3°' are definod by relations similar to
(2.5.1-7). .Altiough H(F,w; J°w') in the above equation is a function
of the old variablas helonuing to the primed satellite, eventually
the right hand sids will be mxpanvied in terms of the new variables
of ho:h ..atelli:er.

{f “he perturbaticns due to the short period terms inH,
are snal., then tre old Haniltorlan can be sxpanded in the
dilfe-ence betwaer tha cld and new variahles. A new generating
funct.on, S, can he defined which differs from 8 by the identity

trans:’'ormation
Gmwdves. {2.5.8)

Then, by (2.5.4), 5 is directly related o the differences 87, &w

defirned by
Wag-ie-28 12.5.98)
ow
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6v-w-;-t%:-. b,

Since J,w aave no wxplicit time dependence, § can be replaced by § in
the H-J equation. Again, the same transformation ca. bs peacformed on
8' with similar results.

Neither in H ner in H' &es the time vuciable literally oceur,
yot both Hamiltoainus are time dependent beceuse cf the appeazance of
the “external variables® belonging to their respe tive partrers.

Explicitly, we £ind that the equation cf mction ¢ H is:

[:1]

- (J,w; I, W) .i‘i:ﬁ..;——.;————;.——.—

t dt 37 t oaw At A1' T dt  ow'
RS T I U
t 337 T At W’
aH R
and since ac equals It we have
F 1 AR SR Al | I (2.5.1¢)

9t At a3’ dy v’

The implication of +his last equaticn (2.5.10) is that the sartial
t.me derivative ocsurriny in each H-J nquation acts hoth on the
explicit time dependence which may occur in the respnctive
canarating functions and on tha "externel varisbles” which occur
therein. Of courss, 5 and B' can be chwosen such that the time
variable does not occur explicitly in eitter generating fu-ction.

Tharefore

B8 (v oy e SIL3E, Sul
—E (C.w; J',w') e ac ﬁ"‘.dﬁ o . (2.5.11)
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at
and -—- by their equivalents, using their respective equations of

Te help us detormine the hest choice for 8, let's np.‘l.uco

potion. We find:

?

3~ rl-‘?r%r Fotes), here {2.5.12)
3(R' ¢+ R') . 80\' + K’

L - c 2 38 s’ 38

o ies) v = v T ”.}

J',w

We axpect that t-e generating funtioa 8§ will be of O(u) since the
short pariod tez.as which will be eliminated by 8 are of O(n).
Thectefore, the sacund s of terns ot'| the le7t hand s .de of (2.5.12)
i of :va). whila the function ~ 5—2—,- 3T 19 of 0(p) a°d may contain
shcrt-period tarss. Thercefore we shall demand that this function not
appear in R, To sec how this can be accomplished. expamd By + R in
a power series of tha differernces 8J, &w, &3' and éw'. 1In order to
mzech the variable Aependence of B(J,w; J3' . w') and R(J,w) J',w'),

espand F.- in ¢w. 7The result of thia e pansion is:
H o+ R, ¢R @ no(t.) + 4m° + &c(a,v, J.w') + snc + R,
G 3w + R, (2.5.13)

whire cuo, Gnc amd dx’ are

oy 2
o E - D) - e P oy e any? oty 2
ll_> i By él- 35T "2‘}. /-aLZ {-8L)" + Ofp7);(2.5.14a)

&+ R_(J.w, 3", ~ RG(E,;; kR I

PR Y THEAT B L L R e

13

ﬁn 33" 3Rc BRC 3

L} L]

GRQO JE,J;(F‘.’- CJ-O-T"— Gwd-'s:-’-r& +:—;r6v ¢ 0(u7)}
’ [

b)

R
SRy = RITN,T',T) - RLI,WI, V) - fw(y'—' a0l o

T
The tnm 5T 271, tu simiiar to that found in (2.5.12), ard the
BH'
factors (- ﬁ-?- '5_" } are equal to n and n', respectively (2.4.5).

So far the equation fnr H, in terms of the new varjables, iss
BT, Srwte (D) + &M 4 R GTV) ¢ 6R ¢ RGNV

+ GR + n-T(J wJ',w‘) + L 'l"""" w')

]
+ R(!B) .

1 the fir8t order short period termm in B are to be elimiinted to

0(u}, the follewing equation mus: venish at least to 0(1'2):

Fr’{- o mE e g A3, c08s (R o). (2.5.1%)

™e angle 0. (w,w') is & function of thn new variadles bulonging to
the unprimed purtner and of the old variables Lelonging to the

primed pertner. PExplicitly,

o (w,w) » §n + 3'n' + {tuncticn of 3,0;4' 5"} (2.5.16)

it 8 is chosen such that

A3,

ST, W) . ""t—'—v.(n,n') colO.(;,v') {(2.5.17)



whare v’(;.w) - j; +* 3'n’,

then {(2.5.1%) va:;lsma identically.

“here aprears to be an inconsistency in that 5 depends on the
old action variasle J while, on the right hand side of (2.3,17),
the cwfficlent of the cosine is explicitly dependent on n through
4{a,n'). 1Ia reality, this only makes the reiation between 8 and é2
more complicated, Explicitly (2.5.9b)s

LY 2

ELINRRY? Ste SRS 4
M S by BB L M
L
but ky (2.5 %)
- [T -
ot I T ST PS S ) vy - A_2L 3
el Ij(v T eI R ax_‘)sino’ .

Solving for g:-: ve tind

1 3)\’
A T T
L A v

1-u g —-\‘2 oA un“

2 A 2
-l - M'E E(;)lim’" 2 0uT).

We s3e that the difference between r and I in the generating
fur-tion is & second order effect. In any vsss, the differences &7,
Sw can be derived in an ertirely consistent manner from the gendrat-

ing functior giver by (2.5.17). 7he oaly apparent drawback is that

G S o« A At S e
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42 may contain terms of O(yz) like those in Rc. But if we expanded
the equations for {87,4w) in terms of the new variables, we would
find, for example, that such products as 635-2% in the expanded
equation for &w would also lead to a nccndsg:hr contribution to
the secular and long period texms contained in (ﬁo * ﬁc).

The new Waniltonian H is, to 0(»3),

H 2
H-H°¢R°-OG

28
Ho + Gac + dR' * ”W’ 12,5.18a)

whezre the second order remainders GRG and én. are given by (2,5.14b,¢),

2 38
and § Ho, 6(-5) are

2

LY
2 5 '0,C,2 3
] Ho - 1/2 -;;5-(“) + 00, b)

' ’ ' [
TR Sk U L Tl S T &
7t J'- ' aw' '’ 8’ v’
W

AL80, the unharred variables are replaced by their barred counter-
parts .a sach of the remainders to oktain an expression for f
accurate to O(uj).

Some elementary conclusions can be drawn about the quaiitative
nature of these remainders. Each of these terms is of O(;l'2 or u'y.
Obvicusly, the equivalent second order parturbations of the primed
satullite due to the unprimed are also of 0(N2 or p'u). It these
contributions are to be nagligilile, then both u and u' must be

relatively small compared to ¥, » mlu. We shall f£ind in section 2.7
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that in the orbitecrbit problem, temms in B of ¢ /2

) will be
neglected in order to reduce the tamiltenian to one dimenrional form,
Tous, the sscond order coupling is a carparatively minor effect ir
this problem,

axt, the ramainder Gzllo iwrolves procucts of short period tesms
in &L which can be ro-expressed with a single cosine factor. Its
argurent will ameolvy the sunm and differsnce of the angies which
occur in a given rroluct. If the two anglas are ldentical, the
akove wili produze a second order contribution to the secular parz of
H. 1f the sam or differeice between two shert period texrms in a
miltiple of ths resonance argurent, *hen the abova produces a
secrrd order contribution to the rosonance term in H. By a- u.n;uu
line of rmassnlrg, enc contawns only short period terms, since &w,
&1, etec., are sll stort periodic, while ic contning only long period
and resonance terms. On the other hanc, thu remainders dRs and
6(-:-:;) are muchk like 621!0. although tliene reraininrs centain many
mere terms. Clnser inspection of G(-:—:-} reveals thait only the
products

R 3?;

s 38
ol XL < e

contain seculer and long period terms. Thersfore, the second oxder
contribution ro the secular anl resonant terms in i are contained in

.2 = .
Ryas Ry PR

s 98
T 33 * 3w 337 T 337 awilc (3.5.19)

ER

3 w,J7,

2 Byia_
J' 1)

NET R L W ki 1R e 0w
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We can rhow that the contribution of the bracketed set of terms to
the secular and rasonant parts of il is equal to the follewing, to

5/2

Olu™ %)«

LES 28 SR’

- 35 s | )
h‘rr LR oAl
(2.5.20)
31. 3!1. s/2
i(-—&w ‘F‘J'*W"'}*o(“ ).

g: and 3-6!:) agree since

The tirst set of tevms on each mide (i.e. -g-
the only step has been tn replace %:- Ly ite equivalent éw (2.5.9).
The nex: two sets of tarrs un each zide can be shown to agree to
0(u ) by first replacirg P' by (- --—-) Here it is understood
that the purtial with respect to t ucts only on the A and 3'

dependences occwaring in ths cotine argutent of sach term. Taking

the second sex of terms on the Jeft hand side, let's rewrite it as

follown:
ax' s _ 7' 38 _ 38" azs _3_28' 38 2.5.21)
T 5T " HBe 33T " YBwt 3975C ~ Tt wT 5 i

The product {a—wr %—r) can be expressed as a cosine series. Scme of
these terms will presumably contain cosine arqumints {denti.ally
equal to zexo (i.«, secular) or equsl to the resonance variasble.
The partial with respect to t uf the secular part is identically
zero. The effect ef the partial on the rescnance term is to
multiply it by {in + §'p’). Meax resvnance this frequence is of

O(lll/z), while the product of tre disturbing functicns is ¢f O(Lz).
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Therafore the contribution of this term %o the resonance i3 of O(ns,

Tre remalning step ln demonstrating the equivalence is to replace

35 oy (e33), amd 2o by ( ay') At =his point that
Ev,':!y J), & Bﬁtby 55 <his point. we can sen

~hs 3ame oparations can be applied to the third sat of terms on each
zide in (2.5.20) to show that they also agree. Tiis second
formulation is used in section 4.2 to find the se-ond order
contribution caused by the indirect action of the sun.

There are a couple of drawbacks t¢ the procedure outlined.
First, if we wish to deterrine the orbital slements accurate to
seccnd order, then a second H-J transformation must be made on H,

trarstorming the variables from J, w, etc., to J. w to eliminate the

socond order short period terms in H. Second, the secular and resonant

terms are not restricted to the Hamiltoaian H, but also occur in the

aitferences ¢J and dw. This that in pering the observer.
long period behavior of L wit: its theorstical rotion calculated to

second order, we must include the second order contribution in :—:

Explicitly:
Long period = long period 828
(mtlon of L) =L+ texmi in: > &

3,3 ,w

2 3
78 3’8
+ 375 &3 » 5T $w'}
where L is found frem solving tox the notion of F. We should also

point out the great power of the techriquas first, the equations of

motion of the transformed variableg are szill canomical; second,

2).
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differencens 83, {w, otc., are oxsily darived fram the ganerating
function; finally, the mathod tends to emphasize the point that the
real probler we must solve is the long term behsvior of H.

Methode for the elinmination of the long period terms for which
J = 3! are less natisfaczory. Xf the motion of the "slow" angle
variasbles @,0 are nearly linsar except for a perfodic perturbation
due to tha .ong periodic term in Rc' then this periofic mation of
8 and 1 can Le removed order by order using a modified version of
the procedure alrsady davelopad. The first step is to separate Ry
into three parts. 1) secular; 2) lcrg periodicy and 3) other terms,

including the resonance term.

R =R + R + K . (2.5.22)

Taking our cue from (2.5.15), we car construct a generating
function Bu which will eliminate, to first order, these long

period terms:

BT 3 w) w =z Mo
pA 4

v’ ’*"’w'
vhere
= a-..c 2 ;oc a-'QC 2 ;.C
L) - ’ - -
viw,w') » k—r-‘r k 30 At ) i YO . {2.5.23)

The old Hamiltonian is, && before, =xpended in the perturbations,
and second ordexr coupling may occur which affects the rescnance

term. If all s'wrt periodic terms in H have been previcusly
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eliminated, and if R:“ only contains resonant texms, then the coupl~ period ternm is 107 = 10

times smaller than the resonance term.
ing of the long period terms will produce aither seculas or other

long period terms. Unless the resonance variable is also like the

long porioh torms being eliminated (j = j* = 0), the second order

coupling will only affect the secular part of the Hamiltonian.

It must be emphasized that if the above procedure is to work,
then each v must be 1) nonzero, and 2) large enough such that the
parturbation expansion converges. Instead of ¥, the effective
expansion parsretar for the long period terms is -su, and it is this
parameter which must be amall. The secular erxs ia the two-body
interaction usvally do mot satisfy this critserien. Por sxample, the
motions of the planatary perihelion ani nodes (vhich in m;u\o cases
cannot be defrned!) have periods 105 largex than the orbital period
(erouwer and Clemence, 1961b, p. 46). Still, the procedure can be
arplied to at ieast two of the satellite-satellite resonances of
saturn. The reason is that the combined perturbatins caused by the
planet’s ~blateness, the sun, and the lazgest satellite Titan, lead
to a relacively large motion in the pericenter und node of the inner
sitellits witn pariods 102 larger than their orbit periods (Jeffreys,
1953). (t should ke pointed out that the least satisfactery case is
the Titaa-Hyporion resonarce. The proyrade motion nf the pericenter
of Titan is only about 0.5°/year, while .ts orbital period is
approximately 15 days. The pericenter motjor of Hyperion is actually
retrograde and caused ent:rely by the impressed resonarce. In this

case, we must sppeal to the fact that the cocfficient of the long

Sk e e B
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2.6 REDUCTION OF THE TIDE-Fiii HANILTONIAN

TO A CORSTANT QF THE MUTION

" ha‘vo reached the stage where each Hamiltonian that describes
the wotion of the appropriate partner of the resonance can be
explicitly reduced to one degzee of freed-:a. The two tide-fres
Hamiltonians which govern the mn.ion of the first and second partners

take tha forms

B3, md%,00) = 5 Ag(J,3')c0a¥0)
and

(oW iI,.w) = §° A;(J',J)CON(k@)’
. ¥

where the angle ¢ is

Dz JA JA 4 kB kD - 10+ 0,
(Again, primsd and unprimed variables refer to the first and second
parthers raspactively.) Recazll that the two-body interaction must
satisfy the criteoria that it can be expanded in powers of o or
laplace: coefficients, and that the hypothetical resonance dominates
the motion over a long time scale. This means that all short period
terms J ¥ 0, i’ # 0) ard long period terns (J = j* = 0) are
assumedd negligidble and that any terms in the disturbing function
which 1may have very long per.ods must have relatively small

coefficiets campared to those for the variable ¢. For example,

there may exist terms which nearly satisfy the commensurability
relation (1.1) for a different set of integers {J,3'} than occurs in
¢. These very long period terms are neg ected in our approximation.
Implicit in the expansion criteria is the fact that the two orbits
cannot intersect or make very close approaches. Then the magnitude
of the perturbation acting on either uatellite can be comparable to
that of the primary.

Wa can see that the occu. "ence of the angle variables in each
Hamiltonian is restricted to the combination of angles which
conprises ¢. The motion of the action variables is detarmined by the
pa-tial derivatives (acting cn the approprjate Hamiitonian) wit .
retpect to their :orresponding conjugate angle vaciadbles. Therefore
their equations of motion muut be proportional. Exnlicitly. the

cyiations of motion of the first partner are

dL 2B | _.§ §Agsin (X9
’4“» 6)& "lxo

AL L OH | 337 A sin(¥6)
1t 35‘ L?“L\U‘\‘S (

dZ , oH .. S3LA, SIS
A RAd PUS LU

Clearly, the variations of the action variables are proportional to
erch other. Therefors, a new variable x can be defined which

simultanecusly satisfies the relations
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T =
: JX+L°

= kXX 4+ r-o (2.6.1)

Z=ix+z°,

Kote tha’ for a small eccentricity or imnclination the fraction

fluctuation of Lix), defined to be

gii!\ . . TERLL S s 8
,Lj 'r\ao x)'J'Le . (2.5_2)

1s of Cle® or 1) maller than the fractional fluctuation in Ptx) or
2(x} (2.4.4). The equation of motion of x ia given by

dx o AHN XD
it Y] e

(2.6.3)

The three angle variables can be reduced to one alsr. Define y

Y= JAs kD4 i0;

3

H _;d4 _ 3H
r ax
and the Familtonian is reduced to one degree of freedom. The
Hamiltonian of the other resonance partner can be reduced by a

similar procedure. Foz our two-budy resonance, the set of

mwmm ne. S B aRier o ht AR AD @A £ v a O e ecr et e PR R S LI

W
Hanilton's equations reduces to
d% _ 24 . ) !
ey, e S x oy xy)
(2.6.4)
dyg AH " ' .
B e Tx ) e -z 3,y

where ¢ = y + y'.

Still, neither H nor B' is a constant of the motion. The
reason is tnat the above Humiltonians still ccntain an explicit time
dependence because of the appearance of, say, the second partner’s
variablas in the first partner's Hamiltonian. The next step is to
establish scme connection between the two sets of varizbles and
find a new Hamiltunian which is a function of a single set of
conjugate variables {x,4}. To do tiis, we must c~.isicder the form of
the coe!tiéxentn A’ and A; and determine how they are reliated.

The secular part in each Hamiltonian corresponds to the Y = O
term and includes Ho' The coefficients An and A“, can be formally

separated into two parts

Ao(x,x‘) « g{x) + vix,x*)

ALKt ,x) = 8t xt) + (k")
The function s(x) contains Ho, the secular terms due to the
oblateness of the primary, and the secular terms due to a host of
other interactions, but not the secular part due to its rescnance

partner. The same holds for s'(x'). The mixed functions vi(c,c')

and (v’ (x',x) are the secular parts derived from interaction with
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their respective partners, and are proportional to fixet order. This
follows from the fact that the direct parts of the disturbing
functions are proportional, and the indirect parts, to first order,
have no secular term (2.1.8c). By inspection of (2.1.8¢c), we f£ind

that v(x,x') is related to v'{x',x) by

v (x*,x) = ﬁf vix,x'). {2.6.58)

Comparing similar coefficients Av.(x,x‘) and A;lx',x), we find that
they will also be proportional to first oxder, provided that the
resonance variable ¢ is not contained in the indirect part of the
disturbing function. From (2.2.10), the angles contained §n the

indirect part are restricted to the following set:

Ql'm.p,p!,q'ql = i(l - 2D + Q)A - (1 - 2p' - q')h‘
~qd- q'd + (m~1+2p)Q
~(m -1+ 7p')},

where the integers m,p,p’,q,q' are restricted to the valuesg:
n=1{-1,0,1}; p=1{0,1}; p’ = {0,1})) == q,q" = ¢,

“he Enceladas-Dione commensurability,

‘ﬁEn—'Di = A::n - Z\Di + "Bm,

falls into the above class of resonance variables, depsndent on “he
indirect part. This requires a slightly different approximation to
reduce the Haniltonian to one dimensional form. Except for cases

such as this, however, tha coefficients Aytx.x') and A;.(x',x) are

92

proportionel to first order. That is,

At (x',x) = Fray(x,x'). .2.6.6)

Since tha coefficients are proportional, the equations of motion for

x and x' must also be proportionalt

dax’' M ax
-5 5

In addition, the integration constant can be chosen such ¢hat x and
X' are proportional. BExplicitly,

X'-ﬁrx— (2.6.7)

To avoid confusion in taking partial derivatives, replace »' by %;- x
in both H and H'. Making uee of the above relationships, we see

chat the two Hamiltonians take the forms

Hix,x) = 8(x) + v(.%) + ) A_(x,X)cosly + y*)
1 7

H' (%,X) = 8'(x) + UL,v(x,s't) + %.—Y

a (x,x)cosly + y').
y=r 7

The equation of motion for ¢(= y + y') is

40 2wy ptastx) 2, R, . s
3t T:{_ s (h+a;)v(x,x)

-1 (g—x+2-_-)hbt.§)couo.
Y=l 9x

The mum of the partial derivatives with respect to x and X cin be
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replaced by the partial with respect %o x if the bar on "x” is
dropped. This means that%acu on both x and x. The equations of
motion for ¢ and x are now derivable from the Hamiltonian #(x,$)

given by

Toxd) = {JX‘(x)eoe(m. (2.6.8)
(:
where iy(:) =ax, vro,

and ;otx) = 5{x) + :—'-'(x) +vix); ve=0.

B(x)¢) 4is a constant of the motion, which can be verified by taking
the ordinary time derivative of ﬁ(x.O) and relating that to.a sum of

partials. Explicitly,
Sioom o L, ax gl g0 S 0. (269

A slightly different spproximation shall be made to establish a
proportionality relationship between Ay(x.x') and A,"(x' +X) for the
En-Di case. From (2.2.10) and (2.2.11l) we see that each part of
each disturbing function contains the same leading factors, depending
on the eccentricities and inclinations of the two bodies. We have
already noted that for amall eccentricities or inclinations the
fracticnal %luctuation in L(x) is of 0(02 or Iz) smaller than in
T(x) or 2{x), respectively. This means that these same leading
factors dominate the total fluctuation in AY {x).

Ve shall explicitly demonstrate this amsertion for the y » 1

. A;,ii bt v ew - B

term of a simple e-type resonance (i ¢ ¢ » 5A 4+ j'A + kd). From

(2,2.12), Allx) 183
A 0 = =2 conel®l (2.6.10
g (x :‘L—) e x) .6.10)

The function C(x) is a polyncwial series in a, I2 and 02, and terms
which contain fact '~s of 02 or 12 ars at least of order ez or !2
smaller than the leading terms which contain factors of a. After

expanding Ci{x) and e(x) to first order in x, we have

clx) = cio) + (535 + j:—.-:% s % Eyx v 0xd)
.L‘.lk %! e
Fim & [l-kx - T ) E) - el - klxle(r X
o -]

(2.6.11)

The partials with respect to L, L' and I acting on each term in C
reduce those terms which depend on L, L' or I' by a factor of L, L’
or T, respectively. Since the largest terms which depend cn I
multiply a polynomial in a of the same order as the leading term, we

see that each Tt the partials of C cre of O(-c%’-’-). 8ut in the

expansion of e(g)‘. the coefficient of tle L.‘ne:r term in x is of
0(9::.—“-1). Thus the variation ?f Cix) is of o(ez) smaller than the
coxz:npor.dinq variation of elkl(x), implyinc that this leading
factor predominately determines the variation of Al (x} with x. It
is also clear that the variation in x ot the lexding factors in Ay(x)

determine the variation of Ay(x) with x to O(e2 or 12) for the more



ISR A 5.6 bt iNibabc | 1o 01 el <

25

general case.

The principal ex.eptions for the two body interaction are the
synodic-type fesonances, for which the expansion of the disturbing
€ nction tn powers of ¢ is invalid anyway. Por a synodic rescnance
to occur, A @ A', or the satellites must be at approximately the same
radius. Thus the whole concept of a rasonance variable +hich can
evolve sloxly from rotation into libration is inapplicable to this
case. However, synodic resonances involving three or more bodies
can satisfy this evolutiocnary description.

The coefficlents A,’(x,x') and A;(x',x) can be formally

separated into their direct and indirect parts:
Alxex') = Ap(x,x') + Ayp(x,x")
AY(0,x) = Ajp(xt,x) + Agr(x',).

Using {2.1.8c), wa can establish the following relationships to

O({ii :
o

Yolx'ex) = Gap(x,xt)

A'__(0,0)
X a g %ex")
A ;0,0 ¥

[}

Ayr(xt,x)
Therefore, the relation between Ry(x.x') and A;Cx',x) io

Ap(xt,x) = KGALX,X") (2.6.12)

,A'zw,m

N
exe u Ay!lo.m

Unlike in the previous case, the proportionality constant differs

for each value of v¥. Since we have already presumed that e and I are
amail, the v = 2 term in each Hamiltonian is of O(olk'e'lk'!xlilx'li'l)
smaller than the y = ] term. If we r tvict the Hamiltcnians to the
Y = 1 term, then the action variables x' and x are again proportional
by the factor Kv" 8till, this is not enough, because the nmixed
secular term v(x,x’) in H has a different proportionality constant
than the vy = 1 term (cf. (2.6.5), (2.6.10)). If the sys.mm is to be
described by a one dimensional Hamiltonian, then the mixed secular
term muat satisfy one of the foliowing criterias 1) The mixed terr
v(x,x') is negligible compared to the unmixed secular terms and can
be ignored. 2) The proportionality tacwzxxﬁ- is either very large
or very small, such that the effect of one of the satellites on the
othur is negligible. Of course, this impliecs that the fluclations
in x or x' are negligible (if K};—,- igs lucge or small, respectively)
and the one dimensional form is f{mmediately obtained. It should be
pointed out that the Enceladas Dione case satisfies the first

mentioned criterion. If this is the case, then this Hamiltonian is
~% Y ~
Hx,p) = of.) + i (%) + Al(x)cos}, (2.6.13a)

and the equations of motion a-e

ax 3H
— e w - b
x50 Al (x) sing; )
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We shall use the above Hamiltonian as an approximat.jon to the motion
of all two-‘ody resonances, whether or not tune indirect part 2.7 PURTHER APPROXIMATIONS AND STABILITY ANALYSIS

contributes. This is not the end of approximations. Several more Th next strp is to shei that the secular term in (2.6.13) can

gteps must be taken before the above Hamiltonian is reduced to the be uxpanded in a rapidly decreasing polynomial series in x to O{x>),

desizred fora. wi~hout increas.!ng the order of appro...aation already established
(roughly u%‘-). igain, the secular part of the disturbing function
(3

can be formally separated into two distinct pleces:

2 W2
u S |
+ -l e .
{Secular part) nart oIt (x). (2. .1)

The fairst two terms are the zero-order part of fi. Recall t st u°
and u; are shorthand for By + v and Yo * ', respective y. The
parameter K equals one un.:ss the indlirect nart contairs a con-
tribution to the resonancs. In that case X is given by (2.6.10).
The function sp(x) formall: represents the sum of secular
perturbations acting on both partners of the rescnance. There is no
problem expanding the first two terms, as lon¢ a. cthe fractional
fluctuation in L9x) and L'(x) is small. Whathex sp(x) can te
sxparded is less certain. Recall that the secular part of the
satellite-satellite distutbin.g function was a polynomial sexies in

2 2
a, & , e

’ 1’2 and 1'2, or, eguivalently, a rolynorial series .n L,
" und 2 (cf. 2.2,13). Part of the motion of ¢ is derived from the
partial derivative with respect tc x of sp(x) , and the effect of

ti.is derivative is to reluce any given term in Ep (x) by a factor of

L Ter 2 (" 5.11¢). The reason that this is importart iz that if

T T T e T L T S P T C e S mr o
-~
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-p(x) were to contain texms with factors of, say, ee', then those
terms would peovide relatively large cortributions to the mction of
dor &' 1f either 2 or &' were smll, respactively. None of the
possible gravitatisnal perturbations have secular terms of Lhe above
type. A Ii:tor cf ee’ is always associatel with a Jong pericd term
whose cosira argument contains (u - 8'). The conclusion we can draw
is that lp {r* is not qualitatively different from the zero-order
terms an! can b naglested without seriounsly affecting the rotion of
either x or 4. Ths only exie tivn is the cass for angles ¢ which do
not contiin the mean langitude of either partner. For thess anules,
the zero-order part (s {ndependesrt of x {that is, 3 = ' » ), and
the contribution from sp(x) is uniquely important. Igml;kv Lhis
exceptio:al case, we £ind the expansion of the sequlsr part to be,
0 a glo! gsproximation,

2

s 1. St = X
i Jur Fal t} = Ao + XAOK + TAOXX' (2.7.72a)
where (=, 2.1.7, 2.4.2)

. Vo
.xi_”.)g)‘

2 I TRk L )
on ~jn_ < 3'n c;
A 35 A 33
‘ot T oLt it aJ.-L . N

Commensuzadility is assoclated with the vanishing of l“. The

resoranct anqle $ car be construstted so that ; and {-on) are

FIPTEN Y
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positive as the system is pulled towards cormensuzal.ility by tina

tidal acoeleraticna.

The mecular part can be expressed as & perfect aquare plur a

oconstant
: Ao ? . A% .
foeenulur oty A (x ¢ ,-:ff « Ay = -f-‘; (ivre 8}
The Hamiltonfien thean equals
P
fitx,0) = ,,”(/._.n:g.)u)\ - 482eas (x)20a .
oxy
/\2
Since the constant term (A ‘.:.x:) doeg rot sffoct the equations cf

motlon of x or ¢, it can pe arsorbed irto n witacut chagiag these
equationn, rven (f this conitant term wire tire dupenviang, 4% sedl(
would not affect =hese ecual.lons (althauch ¢ wuld affact r." ar.t
agaln this term co te el:minated by m htracti-g it from l-'.. ™e
coeflficient Am can be affe-tively fictored out Ly defiaing & naw

time variable £ related to t by

- (r.7.8)
ts= AO"XQ'

- ~2 -1
where t has the uaits time’langth same 281 ), The eqjuat ore ¢f
wotion than take the form

g 21 agkM
":ﬁﬁ'—‘_ﬂt‘—‘ L)

1

>
fo¥

2l

ﬂhﬁﬁ.Jwﬂt
at qp ©x o
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Finally, tre equation of motion for A;;‘ﬁ) takes the form

N

Lo ﬂ( -1 g -1 ! -1
_E’,(f\cxxf‘” =& on H)+ g% 2 Aal.v[-‘g')’ ? ;i 1)

) a%
_ a(Agha) (2.7.¢)

- .

ot
Therefcre, t1e aquations of motion can be returned to canonical form
by replacing a;;xu by K. Even if A is time-dspendent, a non-
linear tire € is defined,
- , .
t o= jag,(tlat, (2.7.7)

such that *he equations of motion of x and $ are still canonical and

derivatle from the Hamiltonian, A The form for the tiéc-tne

2
L.
Haniltcniar is, then,

B, 0, 0) = 1/2(x + )2 » bix)cosd, 2 7.9)

wvhere the functions ¢ and X (x) are given by

lo,
e o 52,
Y . b)
0%
Al {<)
bin) = . a)
AOX!

From tle ¢ieocussion in (1.0), we know that near resonarce thw

fluctea<.on 8x is roughly proporticnal to !8[1/2 or to the square

’
root ¢¢ e small expansion parareter nl’ 2. Ne¢lecting texms of

102

0(683) in the sucular part is equivalent to neclecting terms cf
0(uéx), which ‘s of the samo order as the approximation Leponcd en
the function bix), HNote that the above Hamiltorian {s identictl to
that of pendul'm plus torque axcept that the parameter ¢ here is a
constant and nct a linear function of the time, and the coefficicnt
b(x) depends orn the action, not the time. The next major exerci-e
is to include the offect of the tides, and male the parameter ¢ timn
Geperdent. First, let's examine the above Hamiitonian for the
axistence and stahility of libration centers,

The existence and location of libration centers can be determined
eithor analytically or graphicallv from Lie phane-srace curves
generated @y the tide-free ramiltonian Hix,4). A typical phasa-space
curve ia shown in fig. 2.7.1. The asymmetry slvut the ¢-axitc is
caused by the momentum dependence of the potent.al-ljike term i1 ,('.
Also ohserve that in figure 2.7,1 ~here axigt s:asble lilration carters
at ¢ equal to roth even ard odd multiples of v, and is the rerul* of
the momentum dependence of the poteontial term. By the way, this
kind of behavior is not general and depends on the form of the
momentun dependence ard the vali ¢ of the rarameters of the systes.

In the limit in which the ma entum denandence vanishas, e 18
reduced to the Hamiltonian of a & rple pendulun, In this case, the
libration centers are at either evon or odd multiples of w, depeading
on the sign of b.

The analytical definition of a libration center is as fol.lows:

Giver there exists a point (xp,op) such that h’cp,ap) is zero for all
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time, and if thers exist closed curves about {xp.opl generated by
H(xp + Gx.op + 89) in some region surrounding the test point, then
that point is a libration center. Inspection of (7.6.), 2.6.13b,¢e)
shows that xp can be set squal to gero, ard °p L8 ¢ hnr » or llw,

Next expand the Hamiltonian in a small reaion about thy tast point:
)=t o) eExl e 8pis, +b S5l ed A Sxi i e0(5)
H(x.ﬁ):.lr(xouo)o PEER VRS R RIS LT ' iy L3y,

This quedratic form defines a conic section (Oakley, 1%, p. 109),

and an ollipce is defined by the vondi-ion u: - H”‘H < 0. Por the

] 9

n-1ib-ation center, the above co.dition reduces to

, NN
) ‘-b”J > G, (2.7.9)

For £ 2r-certer the squivalent condition is

L(l.b“) < U, (2.7.10)

I Ibul is less than one, then be nust bs positive for a v-
libration center and negative for a 2r center. The signof t
datermines the "n.rral” libratfon center, as it ¢id fcr the fimple
pendulum exampler discussed in (1 2). I ‘bxxl is qreatsr tian ona,
and ras the oppositu sign of b, then the system can ljkrate un both
its pormal aad invertod positions. But .f lbui hss tha sam» s qn
as b, then niethur libraticn center is ::able. Tris unusual

ph non in d by the tun daperdance of the petential.

Wu con determina which rasonance variab.es can axhibjit ajther twc

stable libration centers or perhaps none by exy'icitly expardirg tho
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coefficinrt, using (2,2.12). Recall that in e and 1 type resonances
the function b{x) has luading factcrs of olkl ard !l"l. respectively.
Comparing similar e and I type rescnances for whkich < = i (2.2.17,
2.6.1), we £ind that the Hamiltonians for sach are fnrnally the rawe,
Tharefore, bix) noed on.y bu expanded for a simple e-type resouance.
a2 relazive stability of the resocnances :an be dntawined as a

e tion o' k. The coefficients of the sxpansiun arn (2.2.12, 2.4.4,

2.6.1)
I
(0! - ;L.".I'.Cf Py (2.7.11a)
P n
. -2
1 (): - :.“,. €y b\
ox( = 23,%..1'9 'Kl K +
. (tki- 4y
oo (0ya X C e ™ Thanaki- ). c)
xx LYY, P ‘-t:zz !

Derivativas of C(x) with respect to x have been negliated slnce their
contribution te b and b, are of Ole’) smaller than the conteitition
from th= exansion of e(x). The factor l>AmL: is ¢t O(ua). ard
therefore :re coufficient t is of 0('pL' oo("“ = 4)y 12 the mesn
value of the eccentricity, e, is snnoenouqh. Ibm" can be

greater tha rn~, ‘or values of |k| < 4, The coefiii lent b,“
vanishes fo3 | » 2 cose, while b, has the same sign as b for
'k] > 2. omlv £ -w |[k| = 1 case doas b, have the opposite sign
of b, "™ae |k| = 1 case is therefcre sspacially interesting, and

the pherur.eny connacted with two libration centers shall be thoroughly

R qee

-
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inventigated in (3.3). ~

At this point we make a hrief digression to the subject of tides
and their secular effect on the motions of satelljtes. A procedure
in then outlined which introduces the tidal effect into the tide-free

Hamiltonian just daveloped,
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2.8 EZPPECT QP TIDER

To un'dcround the mechanics of tides, lat's restrict curselve:n
to a specific example, the earth-moon system. Becausa the moon is a
finite distance from the sarth, there exists a gradiant in the lunar
force at the sxtended position of the earth. The earth is almost
tpuerical, but not perfectly rigid or elastic. Thus tha earth's
shape is distorted into a footkall-like object which attempts to
follow the moon's apparent motion. The maximum response o the
distorting force lags behind the applied force, as with any oscillat-
ing system in which there s frictioral loca and in which the forge
ing frequency is such less than the natural frequency, The magnitude
of the energy dissipation may depand on the relative 4iflerence
between the frequencies associated with the applied force and the
natural frejuencies of the affected body in a complioated way (Saula,
19€64). The qQuantitative sifect ¢f ct.dal friction on the earth’s
rotation is uncertsis, %ut the qualiuative effect is well understood
(Munk and MacOo-ald, 1940, p. 126)

At present, tle ea.ty's 21tat .oy {s wuch faster than the moon's
orbital mot.cn, en: tke ‘.t 1+..” .i cazTied ahnad of the earth-
moon axis., Sime Yo yrat.ent ia The luiar gravitational foroe is
symuetric along th: nscth-roor axis, 1t ittempts to realign the:
distorted earth along that avii. The rasulting torque despins <he

earth and acceleratex tw» mion in itx oroit, The sarth also ratses

1%

& tide on the moon. But the moon's rotation is s;mchronous w:ith ftg.
arbital mean wmotion, and tha "radial® tide raised on the moon ¢ nly
weskly affects its orbit. This effect shall be discussed later.

The torqua on the moon due to the tide raise! on the eartt no*
only affects the mean motion, but the eccentricit. snd Inclinatlon as
well. 1f the lunar orbit is eccentric, then the torque on tte moor
{(and earth) is stronger at periges than at apogee, causing tle orb:*
to becoms more eccentric as it expands. This positiv: clange in tha
occentricity depends or tha sartn's rotation being faster than the
meon’s orbital ration. The sign of this effect may be reverte! onc:
synchronous rotation with che moon's motion 15 'chieved, The
"averagad” torque exerted on the mnon tends to be ncrral to tha
ecliptic plane and tends @0 incresass the normal conjonent to the
ecliptic plane of the lunar orbital momentum, withcut changing the
component 41 the plane. Therufore the lunar orbit i:s driven towsrds
coincidance with the ecliptic plane, and the lus.r orbital inc.ina-
tion is decresased. The results of a detailed calculation (Ki..a,
1964) show trat the fractional rates ot change in a, e, and ! are of

the same magnitude, RExplicitly,

PaE A AT o g, (2.t.1)

The numetical coefficients in (7,8.1) wera derived under the
aspumption that the individual phase lags associatel w!th esch

fzaquency in the tidal disturbing potential have the same vilue,
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From (2.4.2) and (2.8.1) the secular ghanges in the modified Delaunsy
variables L, T, and 2 are similarly pruportional, oheying the

tealation ’.f @ and I axe lln)'l)l

Lova1i &y (i Fvoe . (2
The varialie % 1 pro crtional t¢ th component of orbital angslar
momsntum . the sclipt.c plane, and this componeit terds to be
conserved. This is wiry A'l f;-:; is conparatively small in (2.8.2).
If the luanr ordital motion were fas<:c than the earth's rotation,
the “footnnll” «wuld re behind the e«rth-moor line, leading to a
spin-up of the earth': rotation ard seversing tre secular effects on
tae luna nlements ju.t discussed, “r aither csse, the tendercy is
to synchranize the ro-ation of the earth with the lunar motion. Tie
earth hait not achievel that astate, bit obviously tlie moon has, as
have manvy of the sate.lites of the cther plaletn (Goldreich ay!
Soter, 196bh).

Cnae nynchronous rotation is ach.eved, there iz nuv longe: an
exchange o’ ortital aiwd rotational momenuim if, at the same time,
the moon's orbit is clrcular. Any tidal def>rmation of the moon
wo11ld rew.n gtationasy with respact to a fixed set of axes which
co-rotat:xd with it. 3.nce there ir no time-varying distorticn with
respect 0 a fived ma3s sleport of tha moon, there can be no
friction v ich would result in & diss.patior of enuargy.

But Lie rwon is in ar evcentrlc orbit, An obsorver on ithe

errth sees a fiked po.nt on the moor nove tcward anc away from him.

AR RIS
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This in-and-out motion xesults in & time-varyinyg dissinative ‘'radlal®
tida, B8e¢xictly speaking, this radial tide does not causs a torque
along the Alrection of motion of the moon. 3ince theze 9 no torque
acting on the moon. orbitsl angular riomentam iz ccnsesvwi whi.e the

orbital evergy dscreases. This ener.y is given by (2.5.1)

Eorute® - ';‘i'

8inze E decreases, the sepimajor axis must dacrevse. The

orbit
relation between the tidal chanpe in the iunar accents fcity and that
in the suminv 5z axim can be derived from the constarcy o the lunar

orbital nomentuam «5
€e JMr{1-a?), (».E.3)

Taking the tine derivative of both sides we find:

a de
'}E't_l - ¢ ——4:‘ ? A ‘2 8.4

whezae T, refers to the radial tide compunent. The im; rtant pxint

to recoynize is that the induced changs in @ is opposite td that
da
caused Ly the earth tide, 1-:! has the same functional form as the

earth tida, except tlat it is multiplied by a factor of thr squate

4a
Tr
of the lunar sccentyicity. All other things boing equal, “c 18

da
much smaller <han -i% . Kaula (1964) indicates that the s~cular
charge in e due to the radial tide is akout two-thirdn tha- cansed

by the earth tide, at the present time. For other sastelli-e sys-ems,
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de,

d? appears to e larger than d—-:—:— {Goldreish, 1963). But tha

supporting arguumnts for either case are not absolutely convincing,

especially since botnh depend on the relative dirsipation in the
primary and their sazellites, of which littls is krown. FPortunately,
the questios of whether the total rate of chinge of the eccentricity
is positive or negative is irrelevent for e-:ype resonances during
transiticn and after capture into libraticon. The tidal torcie acting
on the nean motisa induces a change in the escentricity thriugh the
irnterventio) of the resonance. For an e-type cass, this ressonance
induced change in e is much larger than the tidally induced change.
This asrert.on will be supported later. The basi. fact is that the
inelastic tidal response produces a secvlar change in t);; artion
variables, inlike the purely gravitational ferturbatiorn. which tends
to cause only periodic variations in the action elenents, 'his
point has not besn proven, and the major theoretica! suppor'. for
this conclusion is "Poisson's theozrem on th: invarasbility of the
senimajor axes™ ard the Laplace-lagrange theory of seculic
perturrations (Hagihara, 1972, pp. 164-85).

We have not discussed the Becular clange in the angie
variables tacause the tidal terms are not qualitatively different
from those produced by conservative gravitational forces and are
much smeller. By far the largest change occurs imdirectly through
the impliec secular change ia L,

. o d 2.8,
Dom g+ f lt' dat, ( 5)
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which secularly changes il° {cf. 2.4.1). This cugyests that a muthod
of introducing the tidal effect on the tide-free Namiltonian would
be to define new action variablas which are ronstants in the

ebsenca of any other forces except the tides.
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D=1+ [kt as (2.9.22)

2.9 INTRODUCTION OF THE TIDES INTO r=f.#.(af‘r at »)
THE TIDE-FFE? HAMILTONIAN -5 4 3%

2=17+ dat. c)

In order to introduce tides into the Hamiltonian, let's retwrn - = -
The equations of motion of L, T and Z are

to the original Ramiltonian formulation before it was reduced ts one

al Hy (T ,w
degree of freedom (2.4.3). First, the secular tidal change in L, I w®wE T}'\L( ) (2.9, 3a)
and 2z shall be formally adied to the part due to conservative daf IHy (J ,w) b)
at = 78
ycavitationnl interactions already discussed. The result is
a7 _ 2N AT W)
= e T )
a3y aL a% iy c
I s S5+ 5 (2.9.18)
‘o The elements l-., T and Z are constants in the absence of any
ar _ he  dfy . b)
RE ). gravitaticnal perturbations other than the tides. Their explicic
%’é = —:-:{L + —a‘—'tl, c) dependence on the tides has been elininated, but the tide-free
Hamiltonian depends on the unharred action elements, rot on the
"het;LRf i;rﬂ“ u:;'h“ Hamiltonian for the disturbed body ,‘2"'1" barred variables. We can substitute the harred variables for the
T T T -}
and Tde * Tae and Tac are the rates of change of L, I' and Z due to unbarred variables in li!, but the secular tidal motions (—:;TE, etc.)

tides lone. The equatiors of motion for the angle variable are of the elements are alic functions of the old elerments, although they

well approximated by the tide-free ocquations of motion, because the are approximately constant if the tidally inducod changes in L, T

secular terms which sfise from the inelastic tidal interaction are and 2 are relatively small. If this approximatiun .s not possible,

mch smaller than the secular terms due to conservative ther the unbarred elements still can be successivel; el.w1-uted in

gravitational interactionn. the Hamiltonian by a process of iteration.

After adding the secular tidal change, the next step is to There is another problem with the barred acticn variat'es in
:prcluce .1 new sst ¢f action variables, L, T and 2, defined by the that the equations of motion of the angle varistles depend upon .ne
rela-ions: partial derivatives with respect to the corresponding untarred acticn

elements. We can replace the unbarred partial with the harred

B et M G B Ric ak ¢ 28, ks s Rt me S
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partial, vit';n the restricticn that the partial derivative does not
operate on d:: . d:t or d: as 1t occurs in nz. The equations of
motion for each variable are now derivable from the same Hamiltonian.
The procedure cutlined in section 2.1-2.7 can be used to reduce the
Hamiltorizn to one degree of freedom. But this one—dimensi;nal
Hamiltorian is no longer a cornstant of the motion since an explicit
time dependence is retained through the tidal interaction introduced
into the Hamiltonian. We c'n gee how this time dependence occurs by
taking the time derivative ot P 3,9

Ak

e nESr e HSp -
Now replace J with J using (2.9.2), (2.9.3):

. H

Since [ -T:dt always occurs in H, in association with J, wo can absorb
the first sum of terms directly into the partial derivative of H!
with respect to the time.

“he secular part of tra Hamiltonian has already been expanded
in a power series in x. Tlrerefore, a simpler procedure for
introducing the tidal interaction into the tide-free Hamiltonian is
to replace all the constants of integration (L .l‘ ,z . 8tc.) with
their tidal counterparts {I._ + { L'” t) etc., in the one-dimensional

tide-free Hamiltonian (2.7.1l1a).

‘The naxt step is to dotermine just how these time-dependent
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terms alter the Mamiltonian., The approx:mate tidal acceleration d—n"—

dt
of the mean motion of a satellite, caused by the inelastic tide
raised in the primary, is (Allan, 1969):
a 2
T Sl S, (2.9.4)

where Q i3 the dissipation function {Maclonald, 1964) and R is the
dn (44
radivs of the primary. -- (hence d:) .8 a rapidly decrecsing

function of the semimajor axis a, Since the fractionmil fluctuation

in n near compensurability is small, the change in a and 3-;7 a
associated with transition will also be small., We can expand a3
as a function of x to first order (2.1.7, 2.4.2, 2.6.1::

ger(x) . a0 o te1 ). (+.9.5)
Recall that the fractional fluctuation .n x, =%, vas cf 0(:'/?)
The change in 1.(x) asscciated with transition ci’nto litration or into

reoverse rotation is also of o(pvz)

. Tatuitively, we can see that
if the tidal acceleration ¢:c' gasas aprpreciably during transition,
then this effect by itself could lc;d to capture into the librational
stats. In order for the change in % during transition to ba of
0(10-1) of the conatant term, y must ke of 0(]0-4). The mass

ratios of the more massive partner in <ach of the satellite-

satellite reponances belonging to Saturn (#) are (Jeffreys, 19°%3):
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Monceladus =1 2”X10‘7
Mo -

‘i}e—‘“” = 1.14x1076 (2.9.6)
- &

‘"—}%f“ = 2.4101074,
1t. appsars that for the Titan-Hyperion case the change in 'dd—“: nay
be an inmportant factor during transitica. It does not for the simple
reason that the tidal acceleration of Hyperion is insiqrificant

ccmpared to that of Titan. The resonant flucturation in the

dn, (x)
secumajor axis of Titan (ard ;,—:T—- ) is governed by ths mass ratio of
Ti
Byperion which is of 0(10 3) smalier than 1itan’s. For most cases,

L]
we shall find that _d_n:. can be well approximated by its rean value

near che commensurabilit:.

It 18 posaible that the effestive change in n duriig transition
can Le substantially increased if the ratic of the tidal motions of
a and n' cbeys approximately the same commensurability :atio found in

the resonance variable ¢. Rather gurprisingly, this occurs in the

Mimas-Tethys and Enceladas-Dione abilities, increasing the
effective change in the senimajor axis during transition by an order
of magnitude (section 3.1). This will not substantially affect the
process of transition from rotation into libration, but it can lead
to an appreciable change in the long-term behavior of the resonance,
especially .n the amplitude of libration (Allan, 196%) as a function
of the age of the resonance.

The effect of the time dependency of the "constants® is

118

greatest in the zaro-order part of the Hamiltonian. Any time
dependence occurring in the coefficient of the potertial term is of
0(y) smaller. Let's return to the Hamiltonian H after the secular
part had been expanded in a polynamial fneries in x. Replacing the
congtants of integraticn by their corresponding time-dependent te.ms,
the coefficients «f the expansion are (2.7.2):

[] ‘.“‘

- )‘.nl . M R N e}
AO = Z-(.L-—-'c’j_g-?v‘ d‘._)f - ¥ E;L: 'S i“r" 1‘)2 ( 09-73)
_ (e LA
Aox = —jno-j'né-jjdm 'J',(d""’i 2
Ty FEX ] N
A = . . ¢ g 8% =] - c)
oxx (s, = {.r-}-jv Agr o ;:.Y 4+)*

Barlier, these cunatantes were manipulated to obtain a Hamiltonian
which had the desired form., We shall now show that these operations

are still legitimate.
daL
1 —d:-‘, etc., are rsplaced by their mean values, then sach of

the above coefficients depends only on the time. Puraely time-

dependent terms can be ad&ied to the Haniltoniar without changing

the equations of motion for either x or ¢é. Again, absorbing the
2

-1
torm (Ao - on Aoaot’ into the Hamiltonian fs a legitimate operation.

Introducing a rew time variable t, (2.7.4), related to t by
t = fags) at, («.9.8)

is quaivalent to introducing a nonlinear time and is also a

legitimate operation (see 2.7.6-7).
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Near a camensurability, the constant term in }\“ is of O(n]'/z)
which is abnoemally small. Therefore thr fractional change in Ax

over an equal time is of 0(11-1/

2) largs- tran the change that occurs
in Ao or A;xx. Therefore, “he coefiicient c(t), (2.7.8b), is well

approxinated by

d L)
clt) -A:n(m 3 oA fing 4 3'n)) - u;-:"-;- + j’%) (?‘-"E‘,).
(2,9.9)

Cigerve that the time derivative of c(t) is proportional to the sum
of the secular accelerations of tha mean motions acting in the

reso pnce variasble. Explicitly, the time derivative is - -

dn,
2 detyy ; % O
Aon o jd_t—. b 3"0 . {2.9.10)

The next question we shall resolve is the cffect of the .

momentux deverdence, contained {n T: » on these coefficients, The

greatest dependence would snam to cccur in the lowest order
coefficient A- But this ceefficient has no effe~.t on the equations
of motion for either x or ¢ since the partial derivative with

respect to X t legitinmitely act on etc. Thus the function

ae’
2

-1 .
(A° - “ox‘oxx) can still be abrocbed in H without chwnging the

equations of motion. The coefficient in which the momentun

Qependence is largest is therefore A A“ depends explicitly on
N,
the t:dal torques as they sccur inside terms such as ]dt«T:-(x.'t) .
dn
Expressing —‘% {x,t) as a ‘unction of L(x,t) we £ind (2.3.4):

i ot Grerknss s Bt 4,

Prix,t) = “FEIRME T, 1),
where

a
Lix,t) = Ix + j—:% at + 1

d
Instead of expanding —;:- in terms of x, wo shall include the lowest

order time depend and expand in

dLT
(Ix + ?‘.: (¢ ~ to)).

To the first order terms in (2.9.9) we must add the term

(-.2.11)

A1 ] .
-16.13-'13,“*16t(‘-3———1«155-—-—-"’”"J'7 Saby) -lb;j'g%:a_[dt.(.,’f?';__"'_é’;..-'f_’l;l,‘ _
o * s

The dependence on x in the coefficient onx meansg that the operation
of redefining the time (2.92.8) is no longer explicitly valid. 1In
this case, the dependence on x will be ignored so that the simplest
form for the Hamiltonian can be retained. Besides, it can be
demonstrated¢ that in those cases in which this depenaerce plays an
important role in the evolutionary history of a resorance, the
contribution from this term is insignificant.

The time dependence in the coefficient of the potential term
plays a relatively minor role for @ and I type resonances, This

can be demonstrated by making a transformation of variables from
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{x,4} to another set {p,7}, using the generat.ng function Six,¥) =

{x + cJ¥. These new variablcs are

F)
peEaxsa 4aB8ay, (2.9.12a)

¥

and the new Familtonian H(p.o,t-'.) is

#p,0. 8~ R, 9,8 + 2 0 1/75% 4 bip - cloost + Ly . b)
2t at

Observe that the differerce bet-een H(p,¢,£) and H(x,$,t) is equal
to the potential term 95p. The leading variation of blp - c) with p
is proporticnal to l'lk”z(p = c) for an e-tyre resonance. The

time dependence of {p --¢) as .t cvccurs in the element T &s

(2.4.3, 2.9.7b}:

ar,
Tp -¢) = kip - eft)) + ]—d% at + T 12.9.1%)

tny | oy

Sklp - cloh) + T+ DA (3= + 3'57D) +
(-] (-]

ar,
T
—=at

The facto: multiplying the time {s proportional to

o

2.7 140 n 1 dn. nl 1 dn!
2 T, 3'{°+ r;r:x—x(j n,dt, * A n, 1y ﬂ;) (2.9.14)

by (2.4.4, 2.3.9). By (2.8.1-2), the fractional rate of tidal change
n

of each cf the elements is of the same magnitude. The factor ;&-
(.2 - 3

P . R
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is of O(noa:) , or equivalently of 0(L°). Unless the secular tidal
acceleratiors are commensurable, the first term in (2.9.14) is of
0(02) smaller than that associated with a(t). The same result applies
to the element Z. We have already shown that the x dependence in
b{x) can be approximated to O(ul/z) by the leading factors of I and
2, and the tidal change in these elements has just teen shown to be
small compared with that related to c¢(x,t). We shall now show that
the above Hamiltonian cquaiion agrees reasonably well with the
second order equation of motion derived by Sinclair and alsc ky Allar.
If the fractional fluctuation in I' and 2 are small, then the
coefficient of the potential term b(x) can be expanded to first

order in x. The equations of motion for x and ¢ are

&, ~{b_+ xb_)siné, (2.9.15a)
dE (-4 x

d—!- ® -x = ¢ - b cos$. b)
at

Taking the “ime derivative of d—: and substituting for d—’_‘. we have:
dat

at
2
Lo o, 4 peins - . eingdd - £ (e.x) = 0. (2.9.16)
at at  at

o 005-/2), 2 equals (~x - clt,x), and the two terns in (2.9.16)
dependent ond: and 0 tend to cancel. The function :—f includes the
nearly constant torque term (2.9.10) plus a term nhizh is
suspiciously like a 3 verm. 1f we eliminate x in favor of ¢, change

the time variable from t to t {2.9.8), and replace b by n;;‘al, etc.,
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the result is:
, 2.10 SUMMARY
i_;. + Ao (A = CIEXA Ising + n:n 2 ¢,0) - A’} 9—’-n =0
dat at After a long sequence of approximations, we find that the
12.9.17) satellite-satellite interaction can be approximated by the one-
dimensional Hamiltonian
wvhere the factor P in the dissipative term is defined by
o ane Hix,8,8) = 1/72(x + clc ©)1% + bixjcoss, (2.10.1)
2.1 | B geai2 0l 0T
= 16jL Ty + == 163 o at < 0. {2.9.18)
° ¥ () The equations of motion for x and ¢ are
de(t) dx SH d! ;|
1f g is small corsared to bo, then the time dependence of T 75 I = - =,

the torgue will have little effect in the lidwratinnal phase. 1In 3
and it is understood that = does not act on a(x,t). The explicit
addition, the secular change in c(t,x} is very nearly clt). The

. .- relations of each of the viriables in H to the parameters defining
validity of the expansion is restricted to a time interval for

each orbit follow. The angle variable is:
which c(t)hx is srmall compared to h° during transition. The first

three terms (with c(t,x) replaced by c{t)) constitute the equation G = Jn+ A+ XD WD 4404000, (2.10.2)
Sinclair (1972) derived in his nammerical calculation of tranasition The most powerful restriction on the integers j, 3', etc., derives
probabilities for the Mimes-Tethys resonance. This restricted fram the fact that the interaction is independent of *'.e
equation is identica. to the second simple pendulum example treated coordinate syst*n., Since each of the above angles is measured from
in section (1.2). Allan neglected to consider the effect of the c(t) a cormon reference, the sum of the integers must be zero. See
term on the probiem of capture into likration, although he did (2.2.10) for further restrictions which apply in the two-body case.
implicitly include it and the ¢ term in his theory on the evolution Next, the momentum X is related to the elements e, 1 (e and ¢
of the Mi-Te systeam after trangition. small) and a by (2.6.1) and (2.9.2):

(dL

L(x,%) =J~Z§ = IX+Lo+{SYTaL,

r(x,t) = -t}e?LO =z kx+:'°+;g—g“'dt, (2.10.3)

g
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2(x,%) = -#1%Lo = 1xezo+j T at,

L*{x,t) ={a’ = j(%)x&f;o-pj%‘l"dt' ete.
Thus, the variable x is proportional to the fluctuation induced in
the elements a, e, and I, etc., by the texm in the disturbing
function which contains the angle ¢. Observe that the fractional
fluctuvation in L is of t'J(e2 or 12) smaller than that of T or 2. This
implies that the variation of b(x) with x is principally determined
by its leading factors of T(x) and 2(x) - if the inclination and
eccentricity are small.

The function b(x) is related to the ¢-dependrnt term in the

disturb._ng function by (2.7.5¢), i.e.:

b(x) = A-L

oo A (%), (2.10.4)

where {Al tx)cosé} is the corzesponding term in R (2.2.10,11). Ao:a
is the third coefficient in the Taylor expansion of the secular part

of ¥ and is approximately (2.7.2d},

= 317 |, Euw 342
AOXX = ;—;2 + ST -a-;: . (2-10-5)
“he parameter X equals one if the indirect part of the uisturbing
unctinn does not contribute to the resonance term. Otherwise it
is ~jven by (2.6.10).
The function c(x,t) is proportional to the accelaration of the

motion of ¢ and is (2 9.5%,11):

clx,t) & cit) + pfmit {2.10.6)

R L LS |
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wvhere

any ooy

2 . . [—
c(mm & -Am(juc + j'n;) - (jE +3 3::“‘ - :o),

d én'

The x-dependent tesm in (2.10.€) results from the fact that the
tidal acceleration decreases as a function of the planet-satellite
separation.

Pinally, t is related to ordinary time t by

tT=2a_ ¢,
oxx

The mogt important restrictions and approximations imposed in
deriving (2.10.1) are the following. 1) The dist.rbing function
can be expanded in ‘.ne ratio of the semimajor axes, and is valid in
botl: the librational and rotational paases. Therefore, the above
Hamiltonian (2.'0.1) dces not apply to a twe-body resonance of the
synodic type whic' is rastricted to the 1l:1 commensurability. 2)
The fractional fluctuations in the semimajor axes (or in L and L')
caused by the perturbations are small. This allows us to exp:.d
the secular part of H in a Taylor series in ¥ But there are no
restrictiors on the magnitude of the fraction fiuc*uations in
either ¢ or I. 3) There exist no terms in the disturbing function
(such as the -hort period terms) which cannot be removed or ignored
becouse of. their high frequencies or comparatively small coefficients.

4) Another conditinn is necessary in some cases (2.9), nawely, that
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ths orbital inclinations and eciwntricities be relatively small., The
roason is that we impose thn restriction that fractional fluctuation
in L(x) be small compared t2 *'. : n? [(X) or 2(x). Cne consecuence

is *that the fluctuation in Al.:c. 0 °‘£i" governed by its

leadirg “actors of { and e. Thiu greatly -:-puun the functicnal
form of bix). The restrictiop to small inclinations and
eccentricities car be 1ifte’, but it means that ¢ .0 terms in b(y)
o’ C(%!) must be explic .y determined to find the coefficient )'x'
This I: a non-trivial .ercise in the first~order sxpansion of hix).
't may be possible to improve the order >f approximation to
o(uz) if the imlirect part of the disturbing function does not
contain a ¢-depandent term. Also, } . he mass and/or angular
momentum of one partner is very much larger than that of the seiond,
then a beatter approximation may bo obtainad by neglecting “he mot.on
of the f .rst parthar due to the second. Jnfortunately, the oxdsr of
approximation may not be set by the expansion parimeter, but by
those very long period asrms which had to he ignored because thay
could not be removed by any techniquo such as Brosn's method.
Although we have used the spacific exsmple of the satellite-
satellite gravitational interaction, the ssme meilnds can be
emplcyed on gravitational resonances involving more than two
satellitos. Of course, the many-body rescrance mist satisfy the
same general restrictions outlined for the two-boly case, In
addition, gravitational resonances with the geopotantial can be

sim{larly reduced to tha one dimensional Hamiltonian form if they

& ORI i e ol ANARN 12 3 xRl

also satisfy the relevant critecia.

128
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3.1 INTRODUCTION

New that the necessary prepa-ation has Been completed, ve are
ready to turn to the problem of transition in orbit-orbit cormensur-
abilities., The ctneoretical basis of our <iscuesion of transition of
pendulum-like sys:ams zubject to torques was laid c.rlier with a full
investigation of two simple pendulum exumples. Recall that the
corresgonding Hamiltonian of the first (I} and second (I1) examples

were (1.2.1, 1.2.2.)¢

It H{5,%,t) = ¢ + B{t)cono,
Il Hix,d,t) = 1/2(x » c(t))2 + but)coséd.

From a study of I, & picture of transition was developed which
involved the motio: of the turning points or roots of {Rip) = n)

obtain:d from the intagral solution for x. Explicitly,

i _____Q) = . ~ ’
Jdv——ﬁm t-tot R(p) = vI(t)-(H-1p%)2,

The sijnificant results were: 1) The roots were labeled in ¢t ,
rotation phase according to the vaiue of ¢ at that root {either
mod (7) or mod{27}) and to the sign of pi= -¢). 2 The relative
positise of these roots in +he complax plane cialltatively
determined whether the system executed rotations or librations
(fig..2.1a-c). 3! Trans:tion lnvalved the motion of the interior

roots towards the origin and =hen >ut al.ng the imaginary axi-,

TN Jaal W (A s W Wi s ot
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From this picture, a “tranaition phase® (fig. 1.2.2) wup defined 2n
which our attentior was focused on the moticn of the interior roous.
He found that thelr motion was well-defined adcept for . very seall
sot. of poasible motions near the sticking motion.

The same methode were employed on II, with the fol.owing
renults: 1) We found Lhat its transition phage was apprey.matel; the
same as that defined for I to fire: order in tha small 1 (rametacs
b.l' %% ané b-J/z :—: . 2} A ositical angle 7‘."_ was der:v~d which
defined the sticking motion in which the pendulum went «ver the top
for the iast time, reversed .:ian, and again slowly appro:ched the
top, tendlng to "stick" there., This particular motion icparated
transitions which led to libration of the pendulum from trans!tions
v4ich led to reverse rotation. 3) Also, a probability for cap-.re was
derived, given arbitrary kinetic anergy of the pendulur as 1t went
over the top foi the last time.

The othar major development involved the orbit-orli:z interaction
and hov it related to these nimple pendulum examples. A che-
Aimension) Hamiltonian was derived that is a vr'id approximetion, to
O(u:-s'), of t.e very long perlod motior, inciuding the seculsr
motion due to the tida) influence. This third Hamiltonian (7II) has

the form {(see soction 2.10 for 2efinition < terms):
FIXr Hix 4,8 ® /2% + cix, 8017 ¢ bixiccsd, {3.1.1a)

whers it is understood that the partial derjvative wit™ resrect tc x

doms rot nperate on the x dependence in c(,t) (section 2,9 . The
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equations of motion are:

M. %!". » ~ble)sird , Q.1.1h)
de

WLl LD -

= F x = ¢(x,t) h‘ x)cosd. c)

Moreover, the valility of IIJ extends to hoth the libraticnal and
rotatisnal phases of t» resonance variadble ¢, so that it can be used
to discuss transition. When restricted to small inclinations and

eccentricities, the fractional fluctuation of the coefficient of
Sx
[
¢ and I. In addition, the simple & and I lype resonances for which

the potential tm(g-g-) 48 determined to 0(=—) by its leading factorsof
k squals 1 had {dertical functional torms for b(x). This suggests
that prost of the physics of transition can he discovered from a
therouch investigation of a few well-chosen examples.

The |k] = 1,2 cases of the simple e type
(1.0, 0 = 32 + 3'2' 4 yu) wi'.l be these examples. The reasons are:
1) tt- |k]| = 1 car: conprises most of the obsnrved rasonances; 2)
the |h; = 2 case ' eguilvatoent to a first order Taylor expansion
of bix' and is therefore a practicval éonrultution of all possidle
tvo-teily resonancet. ‘exceot synodic) in the mml]l fluctuation 1imit
(8% <« !.o.l'o,zo).

The principal toplc of this chapter will.be to unders-and the
tzana:tion mechanirm operating in the orbit-orbit interaction in

terms >f the picture develoged in section 1.2. Although such
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alfocts as the sesular changs in the roots «s tha systar approaches
the transiticn phase are relevant, we shall defer -eir axplic.t
deternination until section 3.4, along witl other topics related to
the recular chan;a in the elements Ln sach phase, includ:ig the
amplitude of ]ikraticn., The principal analytical tools w.ll be

1) action intagral and 2) averaged equations of sotion fo° the
turning pointy of x,

There are sevaral steps we can perform premaratory to an
explicit examination of transition, among these veing the derivation
of the equations of motion, and a spec!fic labeling sctere to
jdentify roots. To further simplify the probiem, we stall adopt -<nhe
following conventions, which in no way restrict the genecraliwy of
.he problem.

a) The "normal” libration canter (obtained from bix! = bL(J)) is
at mod(2n), or euivalentily, i <« 0, Xf, for a ¢.ven
resonance variable ¢. the norrai conter is 8 modiv), then a
new reschance variakle can be defined (Y = ¢ + n , for which
the normal center iy at modlan),

b) The argle ¢ is constructed such that the ..dal torque
secularly decre-ses '0. This mesns that ’ is pos.tive
before the commensurability is estahlisted, It “ollovs that,
in the positive rotation phase far fron trarsiiLion, tle
function c(x, ) is Jess than zero ard S 1g greater than

de
28X0.
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c) In the positive rntation phase far fr.m transition, choose
!‘o such that the time average of x vanishes. Recall that the
action "pol.zot. alse vanishes given this particular choice.

Another consequerce is that H

2
pos.rot. ® /27,

From the irtegral solution for x, we find that the ro *s of the
Quartic polynom) R(x) round the motion of x. This statement is
trre even if these roots are time (or momentum!) dependent. The

roots are obtained from F.(x) » 0, or

REx) = b3(x) - (1 - 12k + )13 = 0 3.1.2)

For the simple e-type resonance, the function b(x) han the form

(2.7.8a, 2.4.421

ikl

1 cetx {3.1.3)

' -
bix) = 2. “oaa

1] WP} |xls2
c lx) (2L " t=kx = T.))

wheze

-y ® 172670 0. (2.1.9)

%2 sinplt!  tee nlcebre il nanipulation, the variables x, o, M,
bi{x) ard € wili be rn'e. ined muh that the roots of {R(x) = 0) are
dimenrionless, shile il ecuations of mtion remain canonical.
First, divide R(x) by l':' and recefine x, cix,t), p (which ocours in

cix,t)}, and K by

GGkl S 1 ot O B e St o

T8

[} H
-(-:%:)- - x T_T:f CL- ) v‘—.%’;" " p} ;v‘- " K, 13.1,4)
]

2

ne function b(x) ; will be rn=lscad by dlx) which .n turn is

to the fellowing.

b(x)!’;2 => bi(x) = 8./l ¢ ]) ly'"‘:‘.

where
. (3 1.%)

Pinally, the equations of motion are -sturned to canponica. fare by

defining & new time T relited to the times £ and t (2.9 84 Yy
- - 2.2 .
t -H‘:‘)t - 1/2.00 m@,gt. {1.1.6)

With this set of transformations, the equations of motivn are.

&, .}'-". w -Bt-kx + 201XV 200, (1.1.7a)
at
“-}--%--x-ao-‘-’z‘-lu(-kxo 1)(“"/2'"«-0- b)
at

Wezsafter, the double baz notation ¢1i -he time {(i.e. t) shall e

dropped. tncidonuy,clx.:) now take.. 'he form

cix.?) = c(0,%) » o xat (3.1.8)

In addition, we see that e(x) iw rov niaced to X by tla following:
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’,
aly} = .o(-u » 1)’""‘ 3,1.9) M TOOC x’ is an impliocit functinn ¢f the variables x ani ¢ thiough

the functions B and ¢, %he equation 5f motion can be ecprensud ass
The four roots, ot tained from R{x) = C, shall be labeled

. ax » ™
Mcording o the folloviiegy scheme. 14 aK ¢ )
a_F.t -3 r.l. % & (1.1
a) First, if a goran root %, satisfies the equation
The partial dorivatives of x with respect tu « and H cas da

2 .
L V“"r ey . "("r" 12.1.208) mxpressed as functions of the roots vaing (3.1.10):
then that roct {» a 2n-root (x,.). Those roots vhich m 1 3 %X +c
sat{afy W T ?"""‘3"('”')"
, S B
M lzztxr + @) °‘“r) b) .93, tha fell time decivative of N nguals its partial time
shall be label teyoots (,')‘ - dncivative. Carrying »it thesa stapn, the equations ot motion of
1) The following rulas shall be used to distingu:sh between £ rodts arm
T-rodes:
& . ..-i&.ﬂ.(.z.._", (3.1.254)
1) If thers rxists cnly one 7-roo:, the izbel is unique. & CHREY™) ’
]
2) Px the care where two n=roots axe real, label them
ax IR
.. and x_ with Xy > Xy If these two roots are 28 o gg!x,;z (_"__), whers )
. I ¢ éix
ccmplex .1 jugate, again label them x . and x__, with an
mx  >1ox . ;(x') »=lx +0-bix), (3.1.130)
3) Thare can :xist three mroots for the k| » 1 case.
- . b)
Labsl chem x . X ., %8, A€ X, < Re X, OF % . %, Slxyy) = o lxgy + € ¢ Bk,

x_itx > Fex . Por thres real roots, latel them

Tor the case whexe two T-zoOLE Te cumplex conjugats, thalr

X %

* . %
. LN iz Ae x,

£ x
* v et

equations of mction can be separated intc resd and ims¢inary petsa,

Similar rales can be used to uniqiely label the 27-roots.
™ result is
The nex: step 1s to derive the equations of motiun of the roots,
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x wRex + i, (3.1.14a)
dre x_ A (x,t a 3
“"&."_""4_:"')‘“"""‘,’5?‘""‘1‘”“‘u'a‘u'”'*n" b)
amr x

» ac t K] 2,
——d;—--ﬁ‘—l((s = Re X )zdm x = In x 2Re xv). c)

The partial der .vatives of Im xg and Re x, can be o tained from
{(3.1.9b) after 1eparatin; these equations into their real and
imaginary parta. This procedure works well for the |k| = 2 case,
but not for the 'k| = L case. A better method for this latter case
is to separate the quactic polynomical {R{ke x +1iImx) = 0} into
its real and imsginery parts, and frowm thene relationships determine
the partial derivatives as functions of the resl and imaginary
parts of L

Re“ore proceeding, we shall consider thi effect of
arproxiriating c.x,t) by ¢(0,t) during the transition phase. To
estimate the of ‘ect of thu action variable in cix.t) on the
probabil ity of capture into libration, let's approximate b(x) by
b(0) 31 #, so thut the pendulum motion is appraximately that of II.
The description of tha transition phase will be qualitatively
similar to thrat fer I, to lowest order in the small parameter

-1 ds

[ br3 (fig. 1.2.2). The equation of motion of the imaginary part

of x_, during trarsition, is

12 a%m*; - gg;’:—'tl- s+, (3.1.19)

139
expsessing S and (x ¢ ©) tn e of §, using (2.13.6), we
gind

dln:x de 2
Lo =2 0cé - 08 . 13.1.16)
172 - 5% [ )

1
dc
At transition, the term pc(t) is of "('d.t ,,Y, and w:..1 b nenlected,
The transition phase in%egral detarm.nes the c:itlcsl wncle °1c for
which the sticking motion (‘ + 0«) occurs. T.a condizior is that

Iw\zx(t) . u-"'x(u = 0, or, after integr-cing (2.1.16}:
te .
de 4
= - - 13 (3.1.17)
RS LKA A

To lowest order, Of # w and B & -8 during transition. Therefore ¢

is

42 5 ~280 + comp,

A (3.1.17) zeduces tn

te
- in - - . (3.1.18)
0mqutn = 0, ) ¢ ””u 4t (1 « cosd)

Since ‘Lc lies in the range n i 01,_, % 3n, and B ¢ ¢, v can
deduce that capture occurs only if n ¢ 0. The above tquation
(3.1,18) is identical to the relation which defines tie sticking
motion for II, if the factor (:-—:) {3 replaced by (2pfi). "herefore
the probabllity for capture can be {ronediately derivex oy rerlacing

the sama factor in (1.2.32). The rasult is
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e © - —(]al'ﬁ -1 3" 3.1.19)

It is unfarstood that if . > 0, then P, =0, and 12 7 > 1, capture
occurs fer all possible iritial conditlons, or has unit probability.

The torm

-1/2 =1 d:

lel a

is, Zcr the sirpls-e case {3.1.3, 2.10.6),

i S

Uz ¢ ra)

IR I e 1=1/2
)
& Yo “>‘o‘m 2 nr 28 O o di’rr
16(’ +3 ulL' dt

13.1.20)

uglel
The magritade of the abvve term is of 0((-——-) ), which iw, by
assurgiion, very large. But this {mplies that P ¢ Gue to the x
depend~nce in c(x,t) is very small.

Incidently, if we chuose c(x,t) to equal

clx,t) = S2e ~ £ ) + pfx + clx,thiat, 3.3.21)

then the second order equation for § is:

ic

- A .
¢ - bsing = at 0. 3.1.22)

The left hand side of this equation is formally identical to the
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equation which describes the spineorbit inieraction, whiis the right
hand side of this equation is one possible form for the mmantum-
dependent torque acting on the affectad planet. Using tnls equation,
Goldreich and Peale (1986) derived a prodability for captura identical

to {3.2.29,
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3.2 TRANSITION THPORY PCR SIMPLE ECCENTRICITY-
DEPRYDENT RESORANCE: {9 = 42 4 3'2' + k&) WiERE [k| = 2

Because of its mathematical rimplicity, the |k| « 2 case will be
eamined first. “he sxplicit solution of the roots as functions of
¢ and H is particularly simple, since b(x) is linear in x. The

explivit solutions for each root, along with their Ldentification,

areg

X, = =lc 4 k8) tdia + k&Y% v 204+ 8 - 172 ¢D)

= ~{c + k8) /A T {3.2.1a)

Xpgs = (e = kB tftc = X812 + 2t - B - 126D

= ~fc - kB) /R - 48(ko 4 1) ; b)

while their equations of motion are:

da'*_;‘s (x-x“) 13.2.28)
dt 4t s 4 se
‘”‘r: de tx - "zu’

- S b)
dt At AT ke S D)

Since H is of 0(1/2«:2) in the positive rxotation phase, far from

transition, both the roots x, _ and %, are of 0(5) while *y and

2 104

.4 87 of 0(-2¢c). In the positive rotation phase, x is bounded

TR S AR el T BATE ke s e e
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betwesn the swaller pair of roots x, and % . Inspction of the

2n-
equation of motion for x reveals that the most negatire valuo of x

occurs at ¢ » mod(27). Thus we can deduce Koo < X The relative

location of X 4o %y, can be discovured by irspaction of thair
difference:
Xpps = ¥yo = 2eB/R = 2E (ke ¢ 1) SR, 3.2.3

for k = -2, %, > X . in the positive rotation phase. If k = +2,

ne

then x__ > x, . far from transition {~o> » fb*l). Put near

2n
transition, these roots may interchange their relat.ve positions.

We mhould point out that in the ponitive rotation ptase, the value
of x for which b(x) vanishes (or e « 0) equalse x? ard must be lass

than x when k < 0 and greater than X, whean k > 0 indeperdent of

2%~
the magnit. de of k From an inspection of (3.1.9), 1 can duodyce
that for Ikl = 2, avand & 27 root are aqua. if and only 1f they
equal k1. Conversely, if a n {or 27) root equals r}, then there
must exist at least one 2v lor %) root which equals k' 1. Therefors,
we can conclude that 1) for k = -2, no root nquals ¥ in either tae
positive rotation phase or the transition plisse; 2) 4f ). = 2, then
the roots X and Xoms interchange where b(x) vanistes.
This information is sufficient to construct the pousible

rotation phage diasgrams for cach case {fig. 3.2.1a=). Incilently,

the principal qualitative difference in the positive: rotatjon phasa

dlagrams for this example and IT is that in II (fig.'l.2.ia) the
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~172 Xow. O Ky My Moy Xw, Xowe

(e=0)

a) Positive rotation phase fox kK = =2. M_ and "2 are the mid, ,ints
of the ¥ and 2» pairs of roots, rospocg.lvely. "

P — ] — G
< et J " >
- ) ————————
X9. O Rae May My Xps Koy, +V2

(e=0)

b) Positive rotation phase for k » +2. Here x and x_ are to
the left of x = +1/2. 21+ 1 23

Imx
3
' |
- 1
_.._(_c.tzg——f--..—-——-):
-{c- | - !
_lecem 22
- —_ | ! Ll -
" e s et . 1 { — .
\ —— y
Xay. © X, tW2 My, My X2we Xwe
{e=0)

¢) Positive rotation phase for k = +2. In this diagram the roots

Xors and x_ 4 %8 to the right of x « +1/2, where b{x) vanishes.

FIGURE 3.2.1
POSITIVE ROTATION PHASE DIAGRAMS POR |k| = 2.

§ B Gn bl + b e v
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midpoints . of the pair of w and 2t roots co‘ncide, while in this
example their respective widpoints, M end M,,r are offeet by an
amount {-2k8). There exists only one possible diagram for k = 2
(fig. 3.2.1a), while there are two possibilities for k = +2

(fig. 3.2.1b,c). PFigures 3.2.la,b are qualitatively similar to the
diagram for the simple pendulum (fig. 1.2.1a), In addition, the
transition phage for thess diagrams will involve the +-roots which
coincide, and then develop an imaginary component.

Ploure 3.2.1c suggests tha: Lhere exists a radicaily different
form of transition directly into the libration prane. in which the
roots L and 32“ exchange their relative positions on the real
axis. The equations of motion of these roots (3,2,2) show that
this automatic transition is an allowed motion of the roots.
Whether it occure depends explicitly on the value of the parameters
er H, and 8 at transition. Subtracting X . and %0 at

coincidence we find:

Xy, = X,_ = +2kBeA - dBlkc + 1) +A =0 . (3.2.4)

2w+

If X = -2 the above carnot vanish since 8 is nejative. Transposing
{2xB) in the above euation and squaring, we f£ini that H must

satisfy the relation

B+ 1/2/8 fh- dBike + 1) = 28° (3.2.5)

at coincidence.

The condition that Beparates these two types of transition is
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for the two w-roots to coincide at the same moment that x _ ard Xyne
coincide. This requirement is satisfied if A= O, H= 282 and
c e k8 » =172, It turns out that this information is not sufficient
to uniquel s sepcify the parareters. BAnother relation can be obtained
by evaluating the action in the positive rotation phase for the

spa2cial case where x _=x -, " 1/2 (see B. 19,20). The resuit

29+

At .

8=<-1/8; c=-1/4; He=1/323 x = =1/2. {3.2.6)

2

1r 18] 2 1/8 and k = +2, the system automatically makes a transition

from the positive rotation phase into the libration phase. For

|s! < 1/8, we expect that capture into libration depends on the

initial conditions, much as it did for IX. Transition of this type

beging when the m-roots coincide and move into the complex plane.
The m-roots are complex if A < 0. From inspection of (3.2.la),

che real and imaginary components of LI are easily identified and

are

Re x , = ~(c + k8) (3.2.7a)

mx , =t . b)

Therefore, the equatior of motion of the imaginary component is:

2
4 Imx

de
- == - . 2.8
Ty dtm' =, x) [&] )

172

The next step is to incegrate both sides between the time ty that the

ot o g SR S .
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n-roots first coincide and the time tt that x = Re x . The result

is

t
2 - - dc 't de
1/2(m x“(t) Inm x“(i)) 3t ftidt(na x - x), a > 0

(3.2.9)

By construction, !uzxw(i) = 0. The condition which separates
transition into libration from transition into negative rotation is

that mzx"(f) equals zero to first order in the small rarameter
-1 dc
8o

1t Imzx“ (£) > 0, then the imaginary comnonents are nonzero as

. Recall that this defines the sticking motion where ¢ > 0-,

x =X . and ; reverses sian again. The conclusion is that the
system has successfully entered the libration phase. But if the
integral is negative, the implicatlon i{s that the system hag rade
the transition into the negative rotation phase.

The integration variable in (3.2.11) can be changsd from t (o
%x. Then the condition that the integral vanirhes vwill det:rmine the

initial value of x, x, , vhich leads to the sticking mctic. ¢ => O-,

ic
Unfortunately, it turns out that LI explicitly depands on the value
of the roots at transition, which in turn depends, in a compiicated
way, on the parameter 8. The dependence on £ must be determined
using the action J. Instead of pursuing this cou.se, we shall
determine an npptoxu;mte condition, accurate in the small fluctuation

linit (9-‘32 << 1) and delay finding a more accurate relationship until

the next section.
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An instructive tranaformation is to observe that x « Re x, is

related to 0 by

(x - Re x) = =4 + kB(L + cos). 3.2.10)
The transition criterion is then

de te
0= Floy. = 9, + kalt1 at(l + cosd)l, (3.2.11)

<

To lowest order, $(f) & v and "ic lies in the range v S °1c % 37,
Thus for k = -2, the system completely evades capture into the
livration phase. Observe that this relation is similar to (1.2.26)
1 the parameter 52 in (1.2.26) is replaced by K. 1f the
fluctuation in b(x) is small, then the motion is nearly that of a

sample pendul'm. Given this approximation, the probability Pc for

Capture can be irmediately obtained by replacing %% by ksg% in

{1.2.40). Purthermore, we can find a general rnsult ap.licable in
the sral! fluctuation limit if we replace -k8 by i-: . The
Probability for capture for a system -ith an action-dependent
potential is:

2
1+ w/zv.lal'l/zxsx)"1

&b
Pe A AR .22
The restrictions are that Pc - 0 if b.x < 0 and t’c =1 1if
lel'lnbx 2 2/v. Por the &> type resonance, the condition that

l’c a 1 (i.e. automatic transition) exactly corresponds to the
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requirement: that LR R N at transition, or 8 = ~1/8, The
above formula predicts that P_ = 1 when 6 = -12/16. Therefore, the
applicability of the above formula must be restricted to values of
|8| much smaller than 1/8 in order to keep &x and hence -% small.
FPor the Ikl = 2 case, the "small fluctuation limit" is defined by
the condition that |8| << 1/8., Conversely, the "large fluctuatjon
limit" is defined by the condition that |B} > 1/8. At the end of
the following section a more accurate probability estimate is
derived (see Pig. 3.3.9,10).

There is a more nerious question concerning the validity of
the Hamiltonian in the limit where b{x) varishes. This problem ir
connected with the existence of terms proportional to e in the
interaction which can cause very lurge fluctuations in & as
approaches zero, and is discussed pore fully at the end of section
3.3. The indication from that analysis is that the automatic

transition mechanism for the k = 2 case is seriously affectel by

such terms.
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3.3 TRANSITION THEQRY FOR SIMPLF “CCENTRICITY-

DEPENDENT RESONANCE; {¢ = 2 + 3'A' + ki) WHERE |x| = 1

The case in wvhich b{x) is proporcional to the first power of e
is particularly interesting because of both its exotic behavior and
the fact that the majority of the naturally occurring resonances are
of this type. It includes the Enceladas-Dione (Am - 261 + ﬂm) and
the Titan-Hyperion (-ﬂw + 3),H + &Hy) examples. The bag of tricks
used on this case shall be more qua.lltative than the rather
straightforward method applied on the simple pendulum and ]kl - 2
cases. The principal difficulty is that although the quartic
equation {R{c) = 0) can be solved for its roots, the solutions are
too complicated to derive trom them the position of the roots in
the complex plane as functions 5f the parameters c, 8 and H (see
Arp. C). Fortunately, there are other ways to answer the important

questions. Our past experience with the k = 2 case should suggest

that this ple should beh similarly in the amall fluctuation
limit. That is, capture into libration may occur, depending on the
initial conditions, if k is positive, while i+ is evaded if k is
negative. The first really interesting question is, how does this
system behave in the large fluctuation limit? From analogous
behavior for k = 2, we expect to find that for k = +1 the system
automatically enters the likration phase if the parammeter B is

large enough. A second cquestion of concern is, what condition

T I T SRS PR £ R
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separates the two types of behavior? FPor [k| = 2, the condition was
that three roots equal 1/2 (3.2,6). The final question is, how does
the system enter the inverted libration phase - {f it can? Aas

with previous examples, the starting point of this discussion shall
be an investigation of the motion of the system in the positive
rotation phase.

Far from transition, the motion of the real variable x in the
complex plane must be bounded on the left by a 2a-root (xzﬂ_) ard on
the rigat by a w-root (xw_), while the magnitude of these roots is
of 0(%). The relative magnitude and position of the remaining pair
of roots can be dlscovered from an inspection of the eguation

{R(x) = 0). For Ik| = 1, we £ind
2% 2
Rix ) « - 2ix, ¢ e} Y- Tlokx + 1) = 0. {3.3.1)

Since H is of 0{1/2 c?), the first term in (3.3.1) is small erly if
x. is approximately equal to either 0 or -2c. The first case
corresponds to the relatively small bounding roots, Xope and x__.
1f c is small compared to 1, then the palr of roots of Q0(-2c) is
also real, since the second term in (3.3.1) is then negative. But
if (=2kc) > 1, then both terms in (3.3.1) are positive. The
conclusion must be that if (~2kc) >> 1, then the large roots are
complex. Thus, in the positive rotation phase, where -¢ >> 1, the
large roots are :u:.u k = =1 and complex if k = +_, while in the
negative rotation phase, the converse is true.

1f the roots are ceal, then their labeling in the positive
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rotation phare rmst be similar to that of the simple pendulum. That

is, the large roots are L and x , and the two w=roots are

27+
interior to the 2n-roots, the same as in II. This description always
applies r.o the k = =1 case and would appear to lead to uninteresting
behavior during transition in that it always enters the negative
rotution phase. Although this is true, as shall presently be
demonstrated, this peculiar pendulum can, fcr a time, librate in an
inverted fashion.

For k = 41, these large roots are complex, if -c >> 1, They
can be identiiied by solving for the roots in the positive
rotation phase for typical values of ¢, H and 8, and then substitut-
.ng them into (3.1.9), which defined the 2w and m-roots, respeutively,
The result of this exercise is that these complex rc-ats are both
m=roots and, i.. the positive rotation phase, can be labeled LN
and x? . Another piece of information that »ould be useful later
wuld be to have some idea of the magni.ude of the imaginary parts
of these "exterior™ x-raots. We expect the imaginary part to be
small compared to the real part (this shall be rigorously
demonstrated later). 1If this is so, then we can substitute
z - Re x + 1In x, directly in the relation defining the w-roots

/

(1.1.9), expanding the factor t-kx“ + 1)1 2 and separating out the

lowest-order imsginary component. We find In Xy ig, approximately,

2mx =1/28 [Rex V2 (3.3.2)

ANEA s DO, SR WAL, o
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which is small if |Re x'l >> (5)2/3 .

For the case where all roots ars ceal pricr to entering the
transition phase, we expect that transition is initiited by the
coincidence ¢! the interior m-roots., If the rcots L and x;’
remain complex through transition, then something analogous to the
automatic transition from rotation into libration found for the
k = 42 case must occur. Pecall that this phenomenon happened when
in the large fluctuation limit both ¢(t) and ? were relatively
large parameters.

To discover the equivalent phenomenon for the 'kl = ) case, we
shall assume transition occurs vhan |c| >> 1. The maximum fluctuation

of x must be of 0(1), since bixx (-kx + 1)1/2

2 0. This implies
that the Hamiltonian can be approximated by neglecting the xz term
for values of Icl >> 1, since the real part of the complex roots is
of 0(-2¢c). Physically, this means that the variation in the mean
longitude of either resonance partner is small compared to the

varition in the pericenter of the unprimed partner. The result is

/2

#1228 h=x+ 80kx + DY coss. (3.3.3)

1f one of the turning points in the motion of x occurs at x = k,
then h equals kc. This condition defines the value of h for which
b{x) periodically vanishes whensver x equals k. The values of h for
which the system either librates or rotates can be determined by
substituting ock for h in (2.3.3) and solving for cosé¢. The result

is
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ke (=
cosd « —Lh_—‘ill.'/z K (3.3.4)
B(-kx + 1)

where ¢ is an arbitrary dimensionless parameter. The physical
solution must be such that kx < 1 for all allowed values of x. If
the parax er o is < 1, then it appears that the right hand side of
(3.3.3) can t or both positive and negative values, with the
implication that the system has either rotations or librations of
amplitude > 90°. (lLater we shall discover that only the former is
allowed.; But i)’ ¢ > 1, then the left hand side cannmnt change sign
as x varies. Siwce % > 0, the turning points in the motion of x
mist occur at cosy = k. The implication is that this system librat
about the 2v-center for k = +1 and about the ¥-center for k = -1
with amplitude S 93¢,

To better understand the behavior of this unusual pendulum,

let’s reconsider the intejral solution of x:

!dl

— sign(-68sing) = ¢t - ¢ . (3.3.5a)
Ax) °

The function R(x)} now equals

Rix) = B2(-hx + 1) ~ (h - ex)2, b)

and is a quadratic polynamial in ~ instead of » quartic polynomial.

That is, there are only two bounding roots, > and x_, given by

x, = Lzuch - x8%) 28] A2 + dete - k). {3.3.6)

*
2c

e key .t
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In the positive rotation phase, the roots x , x_ can be equivalently
labeled X . and X get respectively. Since the labeling is unique
until h = ka, we must conclude that the system must rotate up to the
critical value of h = ka.

The ¢ “eiral solution for x, assuming that the parameter ¢ is

conste” ~n particularly simvle in that the integral is
Pt PO .»¢ arcsine of a linear function of x. The soluvticn
Mm +on of t iss

. (3.3.7)

atr

2
. _kB

<'x, = x_)sin|c|(t - t)- o e
2c

Observe hat the frequency of the m~tion equals |¢]| and becomes
emall as |¢| + 0. But transition is already presumed to occur
when lcl >> 1. Therefore, the secular behavior of the system as a
unction of ¢ can be obtained from t.: ction integral J, since J is
sdiabatically conserved when the orcillation frequency is large
compared to the changes in the system's parameters.

In the positive :otation phase, the appropriate integral is:

2%

Jpol.rot. - Io xd. {3.3.8)

The first step in evaluating this integral is to express x as a

runction of ¢ using (3.3.3);

x= —1—2(2ch - xszconzozlsoowllﬁzcoqzo + 4ctc - kh)). (3.3.9)
2¢
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$.2.78 the turning posrts in the motion of x ocour at Joosd] = 1, the
tso solctio s t.~  implicit in (3.3.9) wust be matchei at elther
. 3t w.e. .he argument of the radical in (3,3.9) vanishas.
she firer choice applies 1if the pendulum rotates and the second if it
‘ibrate’. ’n the positive rotation phasu, the mat:-hing of the two
solutions 1lr-ds to the follcwirg result:

*o0s.rot. ;i-z[uh - 18%cos’s + acc-o/s_’;;éo + “~!° -kh)] .

(3,3.10)

In the libration phass, thn arguten® of tre radical vanishes whare
© raverses sign. Also, % is a minimum et ¢ = 2, 0 > 0 for the
Y. 1 case, while it is a meximumat ¢ <%, § > 0 for k = 1. This
mplisy that the contributicn from che sacond term in (3.3.9) munt

be multiplied by ﬂqn(-)l;\. Bx; licitlys

Xy, " -Lz-[?ch - Mzcmzb + ugnt-k;)lloc“ /Bzcuzb + 488 - xm)).
-t
{3.3.11)
Observc that the first terwm in (3.3.10) for x in an even

pos.rot.
function whi’ the second i+ an odd _unction in § over the interval

{0, 2v}., ~is means that the integral of the seoind term over the

raga {0 € « £ 2¢) must vanish. Thus, is given by

.1’” JEOt.

L] 2
3 - {dch ~ x87)., £3.3.12)
pos.rot. 2c5

BHE, | asediAdR ARy 4 T -
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venishes, the average behavior of h as a function

] e &
Ane Yy -ovev,

of e In the positive rotation phase is given by
a2

Lo
Moos.zot. * ds (3.3.13)

At transition, h « ko, implying that ¢ = 1/78,

The nert slep is Lo evaluite J in the librational phase:

4 . ¢
™X min :
UVORE CYCUEE e WL L I. *11p, 14 < Vb
min nex

(3.3.24)

(o ) are the angias at which ¢ vanishes. Clearly, the only

m‘n!n
monzero contributicn to Jub involves the s.gn ) deperdent part

of xl The remit of intequrating (3,3.14) s

ik’

LTI .
allb- - F; (8" + delc xr)) . (3.2.1%)

Bvaluating J“b' at h = ka an¢ ¢ » 1/28, wa £ind that "ub. s -3rK
and that h is givern by
2
h - & .

11b. e (3.,3.18)
This xpression is jdentiral to tha sscular dependence uf h fourd (n
the rotation phase. This beshavicr supports our suspicion that the
digtinction petwee'; rotation and libration is woaker for thia sxanple
than . is for an ordinary pendulum,

Anu..er plece of ugeful .nformsticm js the variation of tho
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. — # / x
amplitude of Iibration §_ as a funotion of the pessmeter c. The -—%?—'—’_ & \

Xew- Xy- (ex0)

axtzema in tle motion of 0(0“ - bm ) are cbtained from the

- -‘u"
c.ndition that the arquments of the radical in (3.3.9) vanish. This

e dition reduces to the following relation for ‘n'

.a) Positive rotation phase. tHere |¢f > 2]8] and () in

& monotonically decreasing functicn of time.

-.!.nom L {3.317)

or MM‘ decre.ses linearly with c(t).

.‘
“'[.——a—t—'{#
The fullewing der xription of transition can )lw deduced from < —— <
Xaw- |5 e FTN
these facts. For kK = +1, the root x, . Spproaches - 1 as ¢ approaches
the value, 1/23. This noans that the function bix' which is ¢

jroporvional to (=% + nlﬂ A8 smaller in magnituds at ¢ = modin)

than at ¢ » mod(27). At transition, when ¢ s 1/28. the function h{x) b} Hexe the root *_ equals +1, while the function |bix)|, vaniuhes
- " &
vanishes at & = mod(2m), whi'y for | < 1/2(8], the pendulum ;: :o;tm‘ (r). In addition, the root X__ changes from a ) &
libraces with maximum amplitude .n = 90° about the 27 zenter.
Pigure 3.3.1 whows this sequance of events for tha k = +1 case, “1—0—"‘"—: ¢! |
e S v ’
while figure 3.3.2 shows the equivalent sequence fdr the X s =1 oase, x'"_ x", -
whi.h for |cf < -L;-!- lidrates about the ¥ center. ¢ ¢ \
By the way, it is no accident in figure. 3.3.1,2 nat the path m %
/

traced out by the pendulum in each phase i9 a circle o constant

radjus. Greenberg (1972b) obse:ved this phenomenon in his analysis
h
- ,¢} Libration phane; the pendulum likrates about ¢ = mod(27) wit
of a s:milar problem. Furthermors, he found the angular velocity, arplitude .. £ 90°,
as meazured fram the centur of that ¢'zcle, is constant and squal to .

Jel. To prnve thesa assertions let's consider figure 3.3.3 which is . PIGURE 3.3.)

8} »» k= el,
a diagram of the path traced out by the pendulim in tie ponitive TRAMSITION 1N LIMIT _Bl 1 yor

rotation rhase. The center of the ficure is at P ~here 4 = () iz given by

SRR A L

S A S
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e - 4

{e=0) X\{ X4r- N

a) Positive rotation phase.

-

|
R == M. e
Xag®t™" e Xer-

b) The root x _ equals -1 and changes its label from c 2w to a v
root

.

x.'f+ ’ xf- :

3

¢) The >endulum libcates a>out ¢ = » with smplizud ’n % 90°,

PIGURE 3.3.2
TRANSITION IN LINIT {8} >> 3 POR x » =1,
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Thus, D is the ‘sidpoint of the maximn and minimun values of L(r)cosé.
Substituting h as given by (3.3.12) in the squations defining x and
x_, we find

x, ﬁT"“: t .e), (e8¢0, (3.3.19)

so that d s given by

2
a4 --“—;; . (3.2.20)

The distance r from the conter of the figure to the point P {s
related to bix), ¢ and ¥, the angle reasured from the center
O to the point 1, by <he law of cosines:

£ e 8% ¢ 8% iekn ¢ 1) + 2a8(-kx ¢ 13 Zcons. (3.7.21)

Eliminating the ocos¢ dependenne ueing (3.3.2), we £ind that the
explicit x dependance occurring in aich term cancels such that
r2 - Bz s conmtant., That s, the fijure is & clrcle of constanz
zadius, It {m no probleam to show thit this result uiso holds in
the libraticn phase, This means that the abnolute variation in bix)
remains constant although its nean value grovs as ]c(t)| deacreases.
Inspection cf <he flqures desirting the motion of the pendulim
through tracsition reveals teat tho relative darping of the

¢luctuation of bi{x) ls propertiona. to c(L), vanishirg as ¢(s} » O-,
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PIGURE 3,3,3
Patr tracs@ out by pendulum goveraed by (1,3.3) in

praitive rotation phase 2.z k » +1 case. The parameter
d is the midpoint batweesn the ainimum and maximum values
o? bix). Vv is the angle made by vecter ; with zespect to
te origin at D while $ 1s the anyls made by vector

bix) with respect .o the origin ot 0.
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The fact that ¥ Le a.linear function of the time follows directly

fros the law of iines. Explicitly,

__bnY =8in
o+ D " ,""- 2.3.22)

Using the aquatisn of motion for x {3.1.1b), und (3.3.6;, we find

8lusny = 5% @ foonletx - ¢, 13.3.230)

O -1 T ) + modls), 1Y)

Eventually |c(t)| decresses encugh so that the Mariltonian
hi{n,d,%) (3.3.3) {a ro longer a valld approx smation. e expect “har
the approximat.icn broaks down when tha xz torm in B is of the sare
mecrr.tude s Lhn ox term, or until x - [¢|. Prom (3.3.19), the rean

va.un of x is

G o 1720, 45 ) » Ko (3.2.20)
4a

Trexrafors, the iminim:a valus c¢f Je(t)| for which the "amiltoanisr h

is a useful app:oximstion of the motion is

%~ o™, (3.3.29)

T0.4s means that |8 sust be & very laxge mumber if thers is to be

s:gnificant danping ¢f tha anplitude of 'ibration via this
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owchaniss.

So far we have a quatitative picture of how the pendulum
behaves in hoth the smal? and large fluctuation limits fo. the
x| = 1 case. The naxt stige of the derelopment will be tc deterwina
the crizical values of the parameters which separate the two typss
of behavior and to develop & more accurate probebility argument.
Pirst we shall discuss the conplete gualitative hehavior for the
k = =1 case, since it can be easily deduced from the previous
arguments.

Far from t-ansition, the relative position of the four roots
will be as shown in figure 3.3.4a. AL the system evolves, two
possiblilities for the transition phasa axist. If the left bounding

root x, _ does not reach the valie =1 prior to the coincidencs of

I
the .oots, then transition will involve the temporary motion of
the "-roots of! the real axis. As with the k = 42 case, the
variable x will move past the poliit where X = Re X, Thereafter
the components :lm x will move back toward the raal axis, reaching
it before x returns to the value e x_ . This means that the system
hat ontered the negative rotation phase without any possibility of
lidrating (see fig. 3,34h,c). The other possibility is that the

root x,__ does reach tre value -i prior to the coincidence of the

il
interior w-roots. The perdulum then begins librating about the
in. rted posjtion, PEventually the r-roots will coincide and became
complex. The motior of & will vanish and reversn sign somewhers

near the top n-position (flg. 3.3.5¢,b). 9ince x is increasing as

16%

b 0 et —
4= =
K- Ko=  Kete Xaere
. a) Diagram of posi-ivy rotation ‘Dragran of path t'u':od o‘ut in
phase in complas x-jlane polar coordinates {(b(x)}2) tn

pomitive rotation [hasa,

o (LN

______ ——— <

o=
Xea- ¥ Raors

Xew-
- /

+ b) Diagram of the mo'.don of x Motion during period when ¢
just after w-ruot: coincide. reversas sign.

0

= 2=

LI -
x&". x“'.. Xn. Xuro Xq} )

. @) Negative rotation phase.

,  PIGURE 3.3.4
TRAMEITTION DIRECTLY INTO NPGATIVE ROTATION
PHASE POR k = ~1 WO |8 < 17.69.
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a) Positive rotation phase
in complax planas.
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Xys owe \Fﬁ
-Path og motion in polar coordine
ates {]b(x)].4} in the posivive

rotations.
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L) Temporary transition into inverted libration ohane.

’

.
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“t %e X2we $
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¢) Transition into negative rotation,

PIGURE 3.3.3
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At moves past tha position where it equals Re Ko the coeffic;ent
of the pendulum jotantial b(x) which is proportional to (x ¢ 1)1/2
also increases, aftar 0 zeverses sign. After x resches the root
*aue? the variatle x then moves back toward the positic. Re *.
Meanwhile tha irmginary component of x, has vanished and aga'n the
system enters the nogative rotation phase.

The special si-uaticn which neparates these two tyres of
behavior is the foliowing: Let the root ¥ equal -1 at the same
instant that the twn {nterfor n-roots coincide. From the action
integral (App. B.23) the values ¢f the parametnrs for this specicl
cene are:

Be=13,89) = ~6£670; Hw=217.)

(3.3.26)

x, - =]y x'-d.'?eOr x"-xa.u.

2n= 2

1f |8] < 13.87, the pendilum behaves normally during transition.
Por IGI > 13.89, tla svstem temporarily enters the inverted
libration phswe.

How that. the i @ ~1 case has heen dispased of, we shall
cancentrate on the more rubtle behavior of the k = +1 case during
transition. With just one more pieze of information, we can outline
the complete qualitative behavior of the pendulum during t:ansition
for the k » +1 casu, We assert (and will prove later) tha: the
function 3(-) (3.1.88) vanishes wh.n the exterior m-icols, x_ and

x;’, reach the res. axis and ccincide, Recall that ¢ (v} ozrurred in

S i e - 1imitly frr o m-roots wa b ve
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ax -
dc )
a: 'y (x,. ’ (3.3.27a)
[28)]
MY wex - ¢ - Ka(e ~1/2
o(m) %, = € 54( kx, + 1§} . b)

From the above equation, the only allowed motion after coincidence
is for the two roots x,, and x?, to separate. One root (x") moves
towards the left bounding root %, wvhile the othar (x; *) moves
towards the x = +1 position on the real axis. From our earlier
discussion we expect that when the root x;’ = 41, it changes from

& 7 to a 27 root (xz”) and thersafter decreases. We also know that
svhen the interior m-roots coincide, 6(8’; again vanishes. This
means that this function must be double valued i, X, From the
equation (2 (%) = 0}, the following relation can 0 derived:

/

5 emterx, » Y20, 500, (3.3.28)

Pigure 2.3.6 is a graph of lsl versus x for ths special value of
c = ~1/2 and k = +1. This special value rasults from evaluating
the actien integral at the instant %, and :; . ooincide (B.23). 1In
addition, the posit 9n of the left boundinj root :':"_ is graphed as a
function of 8, using (C.2a) and (B.1€a). Observe that the position
of x _ is to the left of the second ~txo of ;(l). This ia to be
expacted gince tre motion of %,_ iz toward the position where

’ (x',c) vanishes, (Pote that this will occur fcr a more positive

ralue of ¢ than ¢ » =1/2). Rccording to figure 3.3.6, there exists
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a maxizum allowed value of |8| for whi:h the equation (3.3.28) is
satisfied. This critical value for 8 and X, can l'e detarnmined by

naximizing (3.3.26) with respect to x,. The resuits are

-2 . .0.2722y x
3’6

8

cl

S
el " & " 2.8333. (3.3.29)

Incidently, the remaining values of the paraneteru for this special

case are (B.21)¢

OJ"‘

X, =12 . b)

Por ]Bl < IB , the value >¢ x, where the exterinr w-roots reach

cll
the real axis jo in the range %‘ x, £ 1, while t'e sec~.d zezo in
4(7) for ¢ = -1,2 lies in the range {1/2 & x % %). Clearly, at the
critical value of 8 w ecl’ the three n-roots co.xide. For valume

of |8] » ‘Bc the implication is that the extaricr ®-roots never

N
40 1each the real axis during subsequent evolutior of the system.
Thurefore trantition is qualitatively similar to the earlier dim-
cussed approxination., The situa<ion is more complex for Iﬁl < 'Bcll'
As the system ovolves, the roots x _ and x move towards coincidence.
I¢ these roots coincide before x;’ = 41, then the system can either
temporarily evolve into an inverted libration phase or remain in the
positive rotation phase as s'»wn in fig. 3.3.7-8. Which occurs
depends on this motidn of the imaginary componenis of the interior

% roats during the transition phase, If the imaginary components

first move of? the rerl axis and then return while x is to the right

of Re Xy then the motion of x is eventually trarped betwean LI
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PIGURE 2 1.6

Graph of lal versus x__ for the special value of ~ 4« -i,2

and k = +1, obtained from the {¢(n) = 0} e iation. From

the s01id line (——), one finds the value of the roots

X, and x:’ at coincidence as a function of IBI. The

dash line {~--) gives the location of the second zero of

the {¢(n) = 0] equation at c(t} = »1/2, while the dash~
dct line (=+-) represents the location of the x,, root

at c{t) » -1/2. During subsequent evolution, the Jash

and dash-dnt curves move toward coincid

ﬁ E"M m m“ﬁw PR O R ERUI R

ence.

c_‘—-o—- e e— N 4
—§ = + Y
Xamro Koo *i S
‘va- (e=0)

a) Transition is initiated by
coincidence of interior m-
roots and continues as
they move off real axis.
The motion of x is first
towards x, _, next towards

N
Re x_,., néar where ¢ van-
ishes (near top n position)
then byck through Re x
where ¢ again reverses ilqn.
This motion involvos tran-
sition fronm positive rota-
tion phase to yet another
"temporary"” positive rota-
tion phase.

The pendulum moves toward the
top 7 position where } vanishes at ¢
and reverses direction. The
angle tl.en increases to the
max imum 4; where ¢ again
vanishes and reverses cdirection
and then moves toward the
bottom » posfition. After
passing through the * position,
¢ decreases to the value (=¢*)
whera it again reverser
direction. Firall, it roves
toward the ¢ position and §
vanishes for the fourth tire,
campleting one revolution in ..

~
Ixﬂo N
MR o < -« ¢
= >— "
Yam. +1
l (x5 o= %ap,) ¢

b) Second trausition, in which
the system automatically
evolves into the libra-
tion phase as the L root
equals +1, then reverses
direction, becamning a 2w~
root.

.

Here, the pendulum moves into
libration phase as bix) tends
to vanish. The maximum
amplitude of libration is in
the range 90¢ % n < 18%°.

PIGURE 3.3.7

TRANSITION INTO LIBRAT .4 PHASE POR 8

IN THE RANGE {~0.2104 2 8 £.0,2722) AND k = 41,
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and x;‘. Therefors, the pendulum has made the transition from
positive rotation into inverted libration. But if these components
never return to the roal axis, the motion of x is trapped between
X and i;’. Although ths curve traced out by the pendulum is more
complex, and ; reversas sign four times during one rotation, it stjill
executes positive rctations. In either case, subsequent evolution
of the pendulum tends to increase x*, (and decrease B(-x:" + 1)1/2 > 0)
until it reaches the value 1. If the systen has made the transition
intn the inverted livration phase, then as |c| decreases the pendulum
eventually enters the negative rotation phase (see fig, 3.3.8b). But
1f the aystem has remained in the positive rotation phase, it will
aiutomatically enter the libration phase with amplituce of libration
S 180°. .

Whether or not the pendulum executes these exctic motions during
transitior dspends, intuitively, on the parameter 8. If its
magni*de is too small, then X, equals +1, then decreases and
changes labels prior to the coincidence of the interior w-runts.
~he condition which separates the ordinary transition from tie two-
stage type just discussed is for x:’ = 1 when x.. and x. co:.ncide.
From the action integral (B.23), we fi-ul that the values of the

paraneters are:

8 = -0.2104; c = ~0.4705;

c2

= +0.6463 - =0.4108 (3.3.30)
Xae . o Xl . ’
H = 0.1407 .

W xRy e oy s -
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n"n

P N

—P—O—A—F'—JO v

LT ey +)
" 1.5; * (e:00

a) Transition in which interior ,The penaulum moves towarcs top
n-roots flrst move off, then z~position (x_,) whers { reverses
return to real axis, trapping sign, next mvinq through the
x betwaen x_. and x%_ . This bottom repogition (x"“) and
is a state 3? inverted again towards ard through the
lilration, top re-position. Tie arrlitude

of libration ¢* about tle =-
center is 5 909,

— - <
M —O——
=
X, X, X +
2m- L e
(":n""zvu)
b) Hare x* = +1 and becomes ‘The libration amplitude
a 2n-r83t. At this point increases to 90°% and thereafter
the system automatically executes negative rotations.
enters the negative rotation
phase.
FIGURE 3.3.8

TRANSITION INTO NEGATIVE ROTATION PHASE THROUGH A
STEMPORARY" INVERTED LIBRATION PHASE FOR & IN RANGE

{-0,2104 £ |8] £-0.2722) AND k = +1.
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In swmary, we have found that there are three distinct modes of

transition depending on the magnitude of the parameter g. 3If

I8} « chzl. then transition is qualitatively similar to II in that
it involves the coincidence of interior m-roots. For B in the range
”sczl s |g} s |9,.1“r transition is a two-staged mechanism; the
first invol-es the coincidence of the interior n-roots, after which
the system evolves either into the inverted libration phase or a
complex positive rotation phase. In the second stags the pendulum
evolves directly into either the negative rotation phase or the
libration phase, respectively. During this stage bk(x) tends to
vanish (i.e. e(x) => 0). The final mode involves direct transition

from positive rotation into libration if {8] = |8 Now that the

cll'
qualitative behavior for the k = +1 case has been thoroughly
discussed, the next step is to back up some of our assertions and to
develop a more accurate probability estimate than that developed in
section 3.2.

First let's obtain a more explicit form for the equations of
motion of the real and imaginary parts of the ¥ ~roots (3.1.9). The
partials of the real and imsgirary parts with respect to H can be
deternined as explicit functions of the narameters c, 8, H and the
T-root par:s by reparatirg the equation [R(Re p  +imp ) = 0} inte
its real 2:d imaginary components, After some simple manipulations

of these two camponents, the following relations are obtained:

k2
Re p

Imp“-m(x"c)-xmxwuzf-za+
L

+ Rezp“ 1 (3.3.312)
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2.4
L —ire'p,® 4 on Re’p, - 4870 + 1) = 0. b)
Re'p,
The second relatjon (3.3.31b) can be used to determine the

partial with respect tv H of the real part of Xge The result ia:

9%

" 1 2 2, -1
— . —— - (3.3.32a)
3H Re p, 1 =-m” + e !

where n and ¢ are

2 Im x
ns= k83 [J € e z b}
2Re P Py
R g
The first relation can be used to determine the partial of the
imaginary part in term~ of the partial of the real part of X Ve
find
3Im x, . Al ~ ) - cz .
L Im x_ . - r\)2 + 62
n
Tharefore the equations of motion for the complex parts of X, take
the form:
4.2 éc 2 2,-1 2. o .
- . + n{l = n) = €°Xx -~ Re x_)
Yagem'x, = gt n) DI LT .
¢ Re R (3.3.33a)
L]

4 ac 2, 2.1 1 _ el - 2
FeRe x -E((l-n) + ¢“) “{Re p’(x Re x ) nl - n) ¢ ¢}

b)
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We should point out that the above equitions are valid only if
mzx’ > 0. Otherwise (3.3.27) governs the xmo=ion of the real roots.

Inridently, the condition that Im =, vanighes implies that ;(1)
aleo vanishes. This can be simply demonstrated by substituting H
evaluited at x = x, into {3.3.31a) and observing that the resulting
e reesion is consistent with 3(11) w 0 (3.3.27b).

It appears as the system evolves towards transition (for k = +1),
that the imaginary part of the exterior 7-roots fir.t gradually
increases (since they are "1/28 [Re x”I'l/z for (~c) >> 1), reach a
maxisum and then decrease towards zero. For :2 >>nand n < 1, the
motion of Im x, is definitely towards zerc. The valus of the
parameter n when the X0 roots colncida, after using (3.3.28) to

elimi:.ate the 8 dependernce, is

" et . {3.3.34)
(oxl” - 1/2)

Since x,, lles in the range (%‘ X, £ 1}, n is bounded between:1l
and Eero, taving its largest value when the three n-roots coincide.
One can also show that the parameter n is greater than or equal to 1
vhen the interor w-roots coincide. This is to be expected, since
otherwvise the imaginary part of Xy could not move off the real axis
while the va.iable x is to the left ot Pe X {see 3.3.30a). During
the normal transition phase (i.e. coincidence of interior n-roots!)

-1 d=

the pararme '8z € is of O(p 3) and is small compared to n. Therefore

the equation governing the motion of Im X . during transition can be

R A S
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approximated by

- de _n__ - {3.3.35)
172 dtm x, & dt(n - l) {Re x, x),

vhich is similer to the equation of motion for the k = 2 case, The
parameter n is a slowly varying quantity. Therefore the factor
(T',"?T) is also slowly varying unless (n - 1) very : - -ly vanishes.
Therefore, the transition integral can be defined as before, and
evaluated to lowest order bv replacing the s)lowly varyinqg paraveters
n and Re x, by their values at coincidence. After integrating the
above equation we have
2 2 de,_n 't - x)at. (3.3.36)

/21Imx (£)- 1/2Im x 1))~ i 1)'ti(R‘ x, - x)dt. (3.3.3

By construction, Im x (i) = 0. Tris time, let's change the

integration variable from t to X, keeping in mind that t is a

monotonically increasing function. The right hand side of (3.3.36)

then becomes
Qﬁ(-.i—)fxlw . (3.3.30
at'n ~ 1 x, Vi

The above is understood to be the path integral defined by the

transition phase diagram (fig. 1.2.2). At coincidence, R(x) is
RO = 1/alx = %, ) tx, = X by - X (3.3..8)

(Here the root X, ig aither x:” OF Xoo 0t dependirg on whether ’8! is
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greater or less than |Bc2l). Thezefore, the above integral reduces
to the following:

. *, |ax}sign (re x, =)
2 (i) . (3.3.39)

d
dt'n -1 R S
x; Six - xz'_) "‘4 - x}

From the transition phaze diagram (fig. 1.2.2), we finé that
x, = Re LI and x, lies between Xpge and Re X . Although this
integral can be explicitly found in terms of arcsine functions,
this step wiil be deferred until later.

Recall that if the above integral is positive, the system has
made the transition into the libration phase. But if it is negative
the converse is true. The value of X 1 for which the chove integral
vanishes (xic’ separates these two events. Recall that the
pribabllity measure was defined in terws of thu value of 62 as the
system went over the top for the last time, and was directly
related to the function qux' evaluated between fixed limits
(1.2.36-38). Specifically,

g 0y
ic

P~ g - {3.3.40)

-

n

$mm
Note that of the terms 1s evaluated in that part ol the
transition phase whare ; % 0. The correspondir imits in the
variable x are x, and x - Again the appre: sath Integral ia

(3.3.40) over x is understood. The relation wiich Refined %, can be
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to eliminate the specific dependence in Pc on ’1:' FProm (3.3.36) we
find:

2 2. . v og . b=v
Imx, (2) = Inx_(p 2 0)]  +I=x (4 < O] «0. {(3.3.41)
Qic $alw

Therefore the probability Pc takes the form

-
o

In
+1Im x,({ %0)
T

Inx, (€ 20)

3,

P
e (3.3.42)

5 - ‘S'rr
In“x, (020} | o
(3.3.39) can be used to evaluate each of the terms in (3.3.42) by
subastituting the appropriate limits and the value of 3 in the

former aquation. We find

" 3x
mzx“ % = 0) I" - % + axcsind) (3.3.43a)
2 M v .4
im x"(o =0 |3' -3 arcsind; b)
where

[0 o <)
x21r-¢ 21~
Therefore Pc is given by
2
P W —————————————— 0.3.44)

€ 1 %(ucsin&)’l
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This formila is valid only fc- the k = 1,2 cases with ¢§ in the range
{o0s g=1). P, vanishes if k = -1,-2.

If the 27-roots were symetrically placed about tne coinciding
w-roots, then 8 and the arcsin of 8 would vanish, implying that P

would also vanish. But this case corresponds to b(x) = constant for

which capture in *o libration never oc.urs. The position of the roots

at transition is implicitly a function of the parameter 8. There~
fore, the interesting relationship is how Pc depends on B, RAgain,
the action integral can be used to uniquely determine the parameters
of the system as a functica of 8 (B.16-18). Pigure 3.3.2 is a plot
of ?c versus (B/Bcl) for both the k » 1 and k = 2 cases. Observe

that the small fluct-ation limit lor Pc where it is proportional to
18132 (3.2.12) is o 1y valid for B_ < 0.1 for the k = 2 case, and

Pc < 0.5 for the k = ) case. Another interesting fact directly

derivable from (B.18) 15 that Pc = 1/2 when B = Bc2 and decreases to

zero as 8 approaches sc . Observe that the probability that the

1
pendulum may temporarily enter the inverted libration phase (k = +1)

is reascnadbly la_ge. A more revealing graph (fig. 3.3.10) is a plot

of Pc versus the mean eccentricity e, far from transition or,
e

equivalently, (;L). From (3.1.3), this ratio is
cl

P

e g 1
o . { C‘) @ - fxh (3.3.45)

%1

1.0 T T T T T 7T 7T 1T
0.8
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PIGURE 3.3.9

Graph of probability for capture intc libration. P

versus e/acl for the k = 41, +24casaes.
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GRAPH OF Pc VERSUS .o/ecl FOR k = +1, + 2 CASES.
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Note how dramatically Pc decreases as a function of e, for the k = +1
case. Pc is less than 0.1 for eo no more than 3ac1. Furthermore,

the two-stage transition occurs only if e, lies in the narrow range

s <
oy 58, F 1.0% . (3.3.46)

3efore turning to questions concerning the secular behavior of
the syctem before and after transition, trere is a serious problem
concerning the applicability >f the theory of transition developed
for the e-type resonances, which must be examined. Racall that in
developing the one-dimensiona. Hamilts - 'an which describes the
resonance interaction, the seccnd crder effect of non-resonant and
non-secular torms on the i:":raction was of O{(p’') smaller than the
first order termsg. These ;inded an infinity of ‘erms for which
the coefficients of their respective cosine arquments were
proportional to the first ruwer of the eccentricity e. If e were
very small, then such terms would tend to produce very large
fluctuations in the motion of the periheliorn, &. But, as we have
seen, a major part of the motior. of the resona ce variable ¢ is due
to the motion of & if e, is very small. 1In fact, e must very
nearly vanish if transition involves the automatic entry into
libration pkise. The question is, could these other terms
proportion.i to e effectively inhibit this automatic transition
mechar..:m? To get a qualitative idea of their effict, let's add

the following term to the Hacziltonian equation:
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28(-kx + 1) 008 wt)c0sd. 13.3.47)

Hers v 135 constant and is asmumed lavge compared to the mean value

of 3, ami X is a dimensionless parameter of O(1). The Hamiltenian is
rov given by

x| -1
Hix,0,t) » 1,20x + 8(t))? + bk + 112 (orx 0 1) .

Acos (wt))cose.

Ve see imnediately that the effent of this exira term on the motion
of the roots is to add a high frequency oscillation. Por |k| @ 1
case, this rapid oscillation ‘would not radically change the average
position even for x very near the value k.l. ™e indication is that
ths coupling of the short period terms to the rescnance term does
no: radically etfect the |k| = 1 case. But for the [k] = 2 case,
this extra term clearly dominates the motion of ¢ for X vary near

Xt

, leading ue to believe that the automatic transition mechanimm
described in section 3.2 for this case is seriously inhibited by
sinilar terms occurring in the sxpansion of the disturbing function,

A more rigorous discussion of this point is beyond the scope of
this thesis. Ve should also Wention thet (3.3.47) does not faithfully
repressnt the complate effect of a high frequency term occcurring in

the disturbing function. In addition, the following tern

A'B(~kx + 113 ain(we)cosd A'% )

T ST e A et ST et e e LR~ VLI NG Ll ST L 8

[ A
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also gecurs in the expansion of the disturding function, associated
with the freguencies (¢ ¢ w),
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3.4 SECULAR BEMAVIOR OF THE AMPLITUDI OF LIBRATION

The rost interesting behavior of any pendulum-like system
governea by a time dependent Hamiltonian {s the damping of the
1ibs ation amplitude ’n' The dmaping in the satellite-sate .te
rescnances to be discussed in ths next chapter is piesertly beyond
the limits of measurement. This is alsc t ue of the mechanism which
is the root cause of the supposed damping, the tidal torqua. As we
hava already seen, there appears tuv be a direct link between the
ratn of change in the libration mmplitude with a given change in
c(t.x) and the value of the parameter B at transition. Tha most
intoresting case is the k = +1, e~type resonance, and most of ocur
effort shall be concentrated on fully understanding this exampla,

Incidently, two of the three res¢ 'ances among Saturr's
satnllites (discussed in 4.1) are e~type with k = +1, But ‘he
Minas-Tethys resonance is & mixed I type {(i.e. b(x) is proportional

to l" (x)xh(x)). It happens that the variation of !,r.(x) with x is

of O(H—M-l- ~ ﬁ) smaller than the variation of !m (x). Thezeafore,

Te
the behavior of this particular example closely mimics that of an

e-type. Thus, we are fully justified in restricting this

discussion to this one case. Furthermore, we shall neglect the Xk
depondent term associated with the asymmetry of the applied tidal
torjue and asmme here that c{t,x) = c{tl. In the course of this

investigation, we shall indicate how it affects the damping of 0“.

H‘Nmmmnmmwm.mmmmur..wnv.w P ot amsran 1 A
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Theze are two limite in which information concern.ng the
adlabatic damping of 0. ia readily obtained, and they depend on
whether the magnitude of B is »> or << than 1, The former case is
oddly enocugh, the simplest, and sary of the important results have
already besn obtained,

Por the case where |8] »> 1, tzansition is governed by the
approximate Hamiltonian hix,¢,t) (1,3,3). Recall that "traasition®
involves the secular evolution of the system frem positive rotation
directly into lidbration “m ® 90*) without the possitility of the
system enteriny the negative rotation phase. This unusual machaniem
is distinguished by two facts. Uniike the simple pendulum the
instantansous frequency associated with the pendulum motion remains
finite and varies mwothly during eransition, 1Ir addition, the
eccentricity (and the function b(x)) tend to vanish during transition.
This even ocaurs when the parameter cl{t) = 1/28. The libration
amplitude thereafter decresses rapidly as c(t) + 0=, Explicitly
(3.3.17)

sine, = EP— 3.4.2)

Conversely, the mean value of the action xapidly blows up as c(t) + O-,
Prom (3.3.7,12; we 2ind
2

L (3.4,2)

4

Incidently, the above relation is valid in both ths positive
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ro~ation and libration phases, indicating that {x) tends to vanish
as c + - , Of course, this is the expected behavior.

The eccentricity is related to the action variable by the
folloving relation (3.1.3):

£ xen?? 6.4.3)

©

where LR is the mean sccentricity in the positive rotation phase, far
from transition. In the libration phase, the average eccantricity

(= 1/2um + .nin” is inversely proportional to c(t), the exast
re:ation being (3.3.18):

.
ave 8
o " (3.4.4)

On the other hand, the fluctuation de 3 (.m - omn) ramaing
coastant in the libration phase, and equals 20°. By the way, the
benavior of ®ave and 80 is reversed in the positive rotation phase.

The average eccentricity is then equal to L) while ée is given by

[ (3.4.8)

- —E
°pou.xot. c(z) %

This beHavior directly follows fram (3,.3.18-19), and a careful
inspsction of the appropriate diagram describing transition (fig.
3.3.1).

The validity of the above results extend inte the libration

phase until

D AR o 0 e 90 i S IS 12
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ol . g3 (3.4.8)

The parameter P i{s a function of the mean orbital elements of the
resonance partners evaluated in the positive rotation phase far
from transition (3.1,8). Rut the orbital elaments avallable to us
are those that the system ponsesses at the present tine in its
evolution. What we would like to know is how the above limitation
on this (3.4,6) approximaticn's validity translates in terms of the

parameter 8, evaluated with tha presantly observed mesan orbital

elemants.
We have already ssen that in an e-type ¢ n.e, any chang
in the fcity 4 by the applied torque is of 0(0'2) larqger

than similar changes in the semimajor axis of either partner,

Thezrefore, the important question i{s how doces the parameter § scale
as & function of {e(t)). Recall that in deriving the dimensioniess
form for the Mamiltonian (sec, 3.3.4-6) which described the motion

for an e-type resonance, H was divided by the factor

2 - 2, 2
(-l‘o) - (l/?oolh) (3.4.7)
8ince the ccoefficient of the pendulum term is proporticnal to ch‘.l,
the parameter B tends to scale like o'kl“. For the k e +1 case,

this implies that the relation between B, evaluated in tha pcsitive
rotation phase (ﬂo), and tha same parameter evaluated with the

present mean value of o(BM) ime
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Znow, 3
B = Bl o) (3.4.8)
Thus, by (3.4.4,6,8), hix,$,t) is a valid approximation for
18 now | ™ 0ML). (3.4.9)

This is significant since for the Enceladus-Dions resonance,
fﬂml ~ 10, which means that the complete tidal svolution of this
exarple can be dete:..ined from the simplified Hamiltonian.
Furthermore, it appears that its presently small amplitude of
lidbration of 0(1°) can only be explained as the result of tidal
damping via the mechanism just outlined.

The last question connected with this topic 1s1 How 4ces the
dissipative term in %% {x,t) affect the damping in the limit
lej >> 17 1n this case it happens that the contribution of this
term ig sasily obtained by taking the time average of the equation

of motion for h over one libration period. The equatfon of motion

for b is:
ah  de
3t~ 3¢ feexdx {3.4.10)

The tidal torque is (2.10.6):

dc dc dc {0,x)
L = £o,0 +px - €2 0+ M+ atx = Sy

r
A @ —— <0,
dc
d——t(o,n

“ SR T SR A SN i 1 T € okl Bt ey st SRSt s 0 C it 207

[

We have added an subtracted a tezm proportional to {x? in %%(x,t)
simce wo want to emphasize that it is tha fluctuation in x and not
its actual value which contrilutes to the damping of ’n' The
parameter 2 is a dimensionless negative-definits constant of 0(.:1.
which means it is mmall compared to one, Therefore the term
1 + 2Mx)) s equal to one to O(o:).

Taking the time average of (3.4.10), we £ind

Gy 242 () ackad - (0, (3.4.12)

The .ime averages of x and x2 are obtained from (3.3.7). The results

azre

(x) = - &5 ) 3.4.138)
4a
2 4
() mer2 s 2 »
:5 (2a)

Thus, the average equation of motion of h(t) after changing the

independant veriabia from &t to the dimensionless parr-eter c(t) is:

2
dh kb
it {1 - 2xx) -—'4.2

Integrating the above equation and choosing the integration constant

s0 that h w ke when ¢ » 1/28, we £ind
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xg’
hic) » 1 = zxx)—dz + Ak8 {3.4,18)
Going hack to the relation which defines unom in terms of h
(3.3.9.17), we find that
= Acz 4c
sird —ai- 4 AR(2 - _B) . 3.4.16)

As long as A is amall, the effect of the x~-dependent in the tidal
torque is winimal.

At the opposite extreme, the magnitude of Bm for the Mirmasw
Tethys ~ase iy 10‘4. This fact, coupled with its presently
large libration amplitude (97°) indicates that B° was also small at
transit.on. For this case, a different approximation can be invoked
to detesmine its secular behavior which depends on the fact that the
fluctuation in x is always small, compared to one, if B° is emall.
This fo_ lows from the observation that the maximum fluctuation in x
is of o«ls{l’z) in the small fluctuation limit. The next step is

to consider the time average of ¢ in the likration phase:
(o) @ = {x) = $c) - (bx(x)co.w (3.4.17)
This time average identically vanishes in the absence of a tidal
ac
torque <t and must approximately vanish in the adiabatic sense if

the changes induced in bx(x) are slov campared with the lidration

frequency. Therefore to OCIBI‘V:) we f£ind,

() = cte) (3.4.28)
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bince tha fractional fluctuation in hix) is small, x can be
replaced by its mean value {x) in the function b(x). 'rhc‘ resulting
Hamiltonian is then identical to example II of simple pendulum plus
constant applied torque discussed in section 1.2. Therefore, in the

libration phase, H(x,9,t) for the k = 41 e~type resonance isi

/2

Hix,6,8) = 1/2(x + c(t))2 + Blelt) + 132 %cons ,

while the equation of motion of H iss

),

an _ dc de “1/2
S - Fx v cten + 1288 cte) + 1)

cosd. {3.4.19)

Observe that the dependent variable can be changed from t to c{t).
We can either take the time average of the above equation or
use the action integral to determine the secular behavior of H with
c(t), The action integral represents the simplest approach for
this example. 1If the x-dependent term in cix,t) is included, then
it appoars that the averaged equation of motion must be used and
that numerical integration is required to f£i:d H as a function of
cix,t) (Allan, 1969).
The evaluation of the action integral in the libration plase is
a straightforward exercise and, rather than repeat it here, we

shall of -arve that it agrees with the result of Best (1968}

waste + DY EEW - 0 - XKD (3.4.20"

J1ib.

where the parameter K is given by
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PIGURE 3.4.1
ADIABATIC DAMPING OF ¢ IN THE L2MIT |8 << 1.
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2

¥4
K.,H'BF*IZ <1

28(c + 1)17?

K(K) and E(K) are the complete slliptic integrals of the first and

sscond tipes, and are defined as follows:

n
¥
K'K) -f (1 - xzun’e)"iae (3.4.21a)
-]
A
7 #
) = ) (1 - kPein’e)*ta "
[+

The most interes-ing rroperties of the abeve functions are the

following (Byrd and Priedman, 1971):

K(0) = E(0) = ;, (3.4.22a)
E(l) = 1 b)

1im K ~ 1 K(K) = ln(—-e’_)
1-K o

The anplitude of libration On. as a function of clit), is
obtained by evaluating H where 5 vanighes., We find that 0” can be

directly reiated to the paraneter X

13.4.23)

R R TS
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Using (3.4.20.23), ’n is graphed in Fig. 3.4.1 as a function of

bx)) . 1/2
REE) 2 ety 4 02

In the limit of small librations the simple pendulum can be
approximated by a harmonic oscillator, The adiabatic constant for
a harmonic oscillator is proportional to 0§|b((x))|1/2. or

b= et s 7By ey 13.4.24)

This means that adiabatic damping in the small libration limit (when
]3] << 1) is an extremely slow process compared to the adiabatic
danring found for the approximation obtained when IBI > 1, Por the
¥irmas-Tethys case we faind that °n eq. o 130° wnen the function b(x)
wag approximately five times laraer th. a at present. This implies

>.c the dimensionless parameter Bo was approximately 53 times

larger than Bm. Including the tun depend in the tidal
torque increases the rate of damping as a function of the
inclination of Mimas such that the function b(x) was about three
times mmaller than at present (Allan, 1969). 1In any case, the
tidal evolution of Mimasg-Tethys can be adequately determined using
this appraximtion since the implied magnitude of Bo at transition is
of 0{107%).

Again, we should observe that this contribution to the dwmping
from the dissipative term is magnified in the Mimas-Tethys

resonance by the urmusual situation that the ratio of the tidal

R A TR e s, B3 (R o WP e
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torques of Mimas and Tethys approximately cbey the same ccmmensur-
ability relation as the resonance variable. The effect of this is
to greatly magnify the ratio of the x-dependent term and the
effective torque, g—i—, acting on the resonance variable.

It B° happens to be of 0(1), then no approximation appears to
be availalble. It happsns that for the Titan~Hyperion rescnance,
which we shall examine, has Bnov = 0.058 and Qm('\ow) = 36°. To
treat this case we shall use the action integral to determine the
secular behavior ¢f the system as a function of c(t). The action

integral in the libration phase takes the following form.

iy, = $36 = k7 x + 11ag + kM 13.4.25)

We know that (=kx + 1} is positive definite since e{X)»(-kx + 1)1/2
and el{x) ig real. Por a libration, the initisl and final values of
¢ are identical. Therefore the tern fdo vanishes., A more explicit

form for the above integral is:

¢ ¢
3gp, = K (~kx + 1049 + kf ™* | (-kx + 1)d¢
) om.tﬂ" >0 ‘min" <0
{3.4.26)

Since the Hamiltonian is symmetric about ¢ « nm (n being an
integer), the nmimimm and maximm amplitude are equal and opposite
1.0, Ou - Om - .¢m1n)' Corresponding to ¢ equal to ¢ , the
wction variable x equals xm where x is defined by the condition
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61‘ = § ox
by =%y - A l‘-.‘l,ﬂ-ac-la + 1) M204 (3.4.27)

If the libration center is at ¢ « mod(2v}, then %, lies
between the two roots 82'_(5 > Q) and ::2"(& < 0). We can change

the integration variable £ m § to x in (3.4.26). The result is

X X,
CRE Y L RO uﬁ-,"-rax v 2kf 2 e » ”Ti't:'l"""
>,
29~ *n

(3.4.28)
a 4 ax
The function -En'-r can be obtained from 3-5/ l?cl and expressed
as a function of just x,H,8 and c {see B.6).
The roots Xy and xz'* can be expressed as functions of
H,8 and c. (APP. C). The limit %, an be expressed in terms of

¢ and H by uaing the Hamiltonian evaluated at Ren? on.

H=1/2(x, ¢ c) + Bl-kx_ + 1)k/2coson {3.4.29)

to eliminate the coun dependence occurring in 3.4.27. Prom these
two equations, we find that pn(E %, + ©) eatiafies the following
equation:

k], 2 klk
kQ - JTL’Pm . (ke + Vg, + Jz—l- He O (3.4.20)

The solution for he ‘unction (-kxm + 1) for the |k| » 1 case is:

IR . A s bR S Mo S5 o ko
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2 2
(-)u(u +1) wl/3{ke + 1) ﬂ‘g(kc +*1)" - (‘5"( (3.4.20)

In £ig. 3.3.7, there are two distinct angles, ’m and 4;‘. for which
& vanigshes, Observe that as the system evolves towards trangjtion
into the libration phase, the angle 0;' increases to 90°, Thereafter
0;‘ no longer corresponds to a vslue for which 4 vanishes. On the
other hand, °m doea correspond to a real libration amplitude in the
libration phase. The important cuestion is: %hich solution (%)
corresponds to this "normal” solution? The right hand side of
{3.4.31) is positive definite and the above equation must be valid
for all possible values of B. 1In the limit |8] >> 1, the function
c(t), at trapsition, equals 1/28 which is presumed to be a large
negative definite number. Thersforse, for the k = +1 case, we
should choose the + sign in (3.4.31). 1In the limit lB[ << ],

=, ® ~c(t) in the libration phase. Again the + solution of (3.4.31)
agrees with the expected behavior. The "normal”™ solutions for

(=%, + 1) and colém are:

(-xm +1) = 1/3(c + 1) + /4/9(c + 1)2 - (/3R {(3.4.32a)

boosy = 29”(-::‘ + 1)“'/2 b}

The action integral can be solved in terms of standard
elliptic integrals, but its form is exceedingly complex. A simpler

procedurs is to numerically evaluate the interral for a given value
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of ¢ and a test value of H. Then H can be varied until the
numerically calculated value of .71 13, agFces with its appropriate
initial value. 5 ib. is easily calculated at transition and is

found to be (B.30,31);

3 - {97 3 18] < lB=1|

1ib. © -2k 4 18] > )8

Figure 3.4.2 is a plot of the initial value e(ti‘) versus the
magnitude of 8. The hreak in the curve occurs at acl & «0,2722. 1t
results from that fact that transition for |8] < chll involves the
coincidence of two r-roots while for Iel > lecll, it involves the
vanishing of b(x). Figure 3.4.3 is a graph of “""m versus the
pararmcter (1 - 2c({t)/8' for several values of the parameter
l8f > ‘Bcll' This graph clearly supports the analytic
approximation developed in the limit |8 >> 1. Note that the initial
slope of the curves approaches the straight line generated by
ploting 2c(t)/8 versus ({1 - 2c(t)/B). Purthermore, the value of
c{t) for which the slope begins to flatten out is approximately equal

/2 for

to ]6'1,3. Pigure 3.4.4 is a graph of % versus {c(t) + 1)
values of |8] S 2. The important observation is that the curve
rapidly approaches the limiting curve generated by the approximatior.
obtained when [8] << 1.

In the course of this development, various kinds of sial.llty
have been mentioned or implied. 1In studying the neighborhood of

stationary solutions of the Hamiltonian {(Section 2.7), we Juferred

RS o R e VRl -
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that these solutions may or may not be stable against small
perturbations. If dynamically stable, these stationary solutions
were designated as libration centers. The system of simple
pendulum plus constant applied torque suggssted that librations wers
possible only if the magnitude of the applied tidal torcue is amaller
than maximun value of the pendulum torque or is "tidally stable.”
Finally, in investigating example III in which the coefficient
b{x) of the pendulum term was momentun dependent, we found that if
the system made a permaneit transition into libration, the
magnitude of b(x) had to tend to increase thereafter. Since it ia
the slow change in the parameter c(t) which indirectly causes the
magnitude of b(x) to adiabatically increase or decrease, we shall
use the terms "adiabatically stable” and "adiabatically unstable”

in alluding to this kind of behavior in the next chapter.
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Graph of the initial value of ¢ at transition, co. versus
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Plot of the sine of the amplitude of libration versus
the parameter (1 = E-B(—t)-) for seyeral valueg of 8 above

the critical value of Bcl.
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4.1 THE SATELLITE~-SATELLITE RESONANCES OF SATURN

There exist three examples of two-body resonanve interactions in
the ten-satellite system of Saturn. Observations of Mimas
(;2—"- = 3.11) and Tethys (4.94) reveal that the ratios of their mean
motions is 2:1 and that conjunction of the two satellites tends to
librate about the midpoint of their nodes with amplitude 46.5°, An
investigation of their mutual gravitational interaction (Tisserand,
1896) shows that this phenomenon can be explained as a gravitaticnal
resonance in which the »ngle ¢ = “Mi - 2AT° + nMi . ",re lihrates
about gero with maximum amplitude 97° and with a pesiod of 70.78
years. The coefficient of the term in the expansion of the disturb-
ing function specifically responsible for the cbserved behavior is
proportional to the product of the inclinations: IMilTe' Thus the
resonance can be classed as a mixed ' type (2.3).

The confunctions of Bnceladus (3.99) and Dicne (6.33) are
cbserved to librate about the pericenter of the inne~ satellite with
period of approximately twelve years ($ = ‘zn - 2)«0 4 umi. The
amplitude of libration is very small, quoted values rarging ‘rom
20' (Goldreich, 1965) to 1.5° (Sinclair, 1972). wub- L Ins of
the resonant perturbations in the mean longitu.es of ir are
even smaller; 1.4' in Enceladus and 0.9' - Vinne 'BErouwe BY: ]

Clemence, 1961, p..133). This means that the librat:- the

resonance variable is principally governed by the - -n of the



pericenter of Enceladus.

The pair of satel’ les farthest ramoved from Saturn is also
involved in an e-typs .asonance. In this case, conjunction of Titan
(20.48) and Hyperion (24.83) librates abdout the apocenter of the
outer satellite with implitude of 36° and periocd equal to ~ 2 years.
The commensurability ratic is 3:4 and the resonance variable is:
4= 3)1_‘ - 4}@ + ﬁw).

Jne novel aspect of this r h is that it tends

P

to keep the satellites as far apart as yossible at conjunction. This
behavior is seen as enhancing stability among the participating
satellites. We shovld also pention that the masses of the satellites
can be deteramined from a knowledge of the r riod of libratior znd the
ratio of the libration amplitude of the mean iongitude of each
satellite (Jefferies, 1953).

This is the set of information avajlable concerning these
satellites. Any speculation concerning the existence uf appreciable
tidally-induced torques acting on any of Saturn's satellites has
not =8 yet been gupported with visual evidence of either a secular
change of orbital periods or, in the case of resonances, a dis-
Flaceament of the centexr of libration away from mcd (1) or mod({2m).

Goldreich suggested that tidal torques are aciiag on the ss! ‘

and offered two arg to support his thesis: 1) The axi
80 many resonances cannot be a chance affair a:d rust bo due tc som
mechanism. He guggested that significant tidal evolution of the

inner satellites of Saturn and Jupiter must have taken place over the
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age of the solar system (v 4 x 109 years). A lower bound on the
dissipation function Q'l was calculated by integrating (2.9.4) and
demanding that the closest satellite (Mimas) was at the planet's
surface 4 x 109 years ago. The tidal dissipation function Q-1 is

definec by the relation

ot - 3;,15— f(—%)dt,
©
where E° is the maximum energy »tored in the tidal distortion a.’
the integral is over one complete cycle.

2) A the.retica! alculation of the dissipation function was
attempted for Jupiter and Saturn and was found to be in rough
agreement with its lower bound (Goldreich and Soter, 1966). Q-l
for Saturn is estimatea to be ~ 1,5' x 105. Accepting this estimate
of Q and assuming that it agnlies to all the other satellites, we
£ind, for example, that Titan, waich is the most massive of Saturn's
satellites, has increased the redius >f its orbit by only 1/48 over
the age of the solar system!

We should mention that  ing ~his value of Q and (2.9.4), the
tidal deceleration of t!e mean motion of Miman is 1.4 x 10-22 secz,
or equivalently, 0.04° centu:y-:". The magn.tude of the revroance
torque can be sstimated from the period »f libration (i e., 70.78 yxs.
for Mi-Te!. wWe find that the ratio of the tidal tcrque acting on

Mimas to the parameter B is ~ 10’5. Bacaus: the torques acting on

sach body tend to cancel in the resonance var‘able, the ratio of



bix) to the sum of tidal torques in $ [2.9.10) is an order of
magnitude larger. Since the torquea acting on the other satellite
resonances are weaker, the ratio is even larger for the : systems.
Therefore, the hypothetical tidal evolution of these satellitas
should be well descrited by tne thecry developed in chapters one and
three. Recall that its quantitative accuracy is set by the parameter

pide
as

AS mentioned e.-'isr the effect of dissipative tides raised by
a given smatellite on its orima-y is to cause a torque parallel to its
xngular velocity. This is trie if the spin of the planet and the
orbital motion of its satellite are in the same direction an) the
planet's rotation periud is shorter thaa tue satelli‘e's orbital
verind. This torque tends to increase the size of the orbit and
decrease its period. One expects that in a many-satellite system,
after a time, sope pairs will approach a commensurability and *hen
evolve throrgh a succession of related resonances. Table 4,1.1 is a
1list of the strongest rez.nances associated with a 2:1 .
comnensurability. (Unprimed variables refer to the inner
sar-"lite, primed variables *o the outer body.)

They have beea ordered in the sams sequence in which the pair
would ncounter them under the following assumptions; 1) Tho tida.
accelera’.on of the inner satellite is at least twice that of the
cuter >ne. That !z, the tidal torque acting on the inner satellite
determines the sign of the torque acting on the resonance -ariable.

Therefore, irn the ab e of ax nce § tends to decriase
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2) The motion of the perihelion @ is prograde while that of the node
f is retrograde. This kind of behavior is caused by the secular terms
in the disturbing function. 3) The motions of &' and Q' of the

outer satellite are smaller than the corresponding motions of O and

Q.

We should observe that all the resonances listed in Table 4.1.1
are “adiabalically stable™ (i.e., the ..lal torque tends to ser ..aly
increase the coefficient b{x) in the libratio.. shase and decrease
the lipration amplitude). This pathological result is related to
the two body re-onance. Ve have not rajected any tidally unstable
resonance variables cutright. The strongest tidally unstable
resonance must have at least three leading factors of e and 1. For
example, the angle ¢ = A - 2X - & + 20" has a leading factor cf eo‘z.
It is adiabatically unstatle if, in the libration phase the tidally
induced decrease in e is greater than the correszponding increase in
e'z. In the three budy interaction, both kinds of resonance
variables appear with comparable coefficient. b(x) (see Table 4.2.4
for specific examples).

Table 4.1.2 lists th: pertinent data novw available on the masses
+,4 orbital elements of theee satellites. This information shall ke
called upon during the course of this discussion and is collected
here for convenience.

Table 4.1.3 lists the observed angular freguencies of these

satellites, the libration period of the resonance and the observed

periods associated with the secular motion of @ and {i. The
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observed secular action of & and § includes both the contribution
from the secular and resonance terms of the 4isturbding function.
Bxplicitly

G - @ 8 PRWY
op sec res

The separate contributions from the secular and resonant parts ¢f

the motion of the appropriate pericenter or node have been calculated
by Jetfferies (1933). In some cases Jata is misaing ei-her because {t
is inappropriate or because the correspending eccontricities and
inclinations are very small and variable and the corresponding
observed average motion of the pericenter or node has not heen
datermined.

Except Loy Myperion, the sign of the motion of perihelion and
node indicate that contribution from the secular term in the disturd-
ing function is much larger than tha‘' of the resonance term,

These frequ noles appear to be well spaced for both tha Mimas-
Tethys and Encelacys-bione ¢xamples 80 that the evolutionary picture
involving a single resorance variable tentatively applies. In the
aas? of Hyperion, the motion of the perihelion is retrograde and
laras compared to the sxpected progrfade motion due to the secular
termn of the disturbing function, Compaze ﬁ;ﬂt “ & 0.9%yz, with
e 19°/yz. Both should be approximately the sane it the
principal contribution to the motion of & came from the sec.lar terms.

The present ordering of the resonance frequencies for ‘e Titan
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TABLE 4,1.2

! ——l 80131-', {;wli;u-j. |

nmajor on to |
Satellites' nxis ?3:;:‘; %:g:?;y Soturn's - Fass (3 ),

lﬂ03km) Fauator | *> !

— - etk aatd - 8

Linas | 186 : 0. 942422 0.0201 | 115317 | 6.7X10" :
-Encoladns~T 238 1 370218 o, 00445 104 11 27x1o'7,
Tethys . 295 1 887802 O 0 12083 Ll 14110'6‘
i Dione _ 7 2. 73491510 oozz 314 1.8x1076 |
T4 tan 1222 15 9454520, ozeo 2.4x2074
Hyperion 1481 21.27666 0,104 ’2x1o‘7
fyperion (2B g L e

o et = —— a—— —- ___

Data on six satellites of Baturn involved in resonances.

Most of the informatisn canes fram Allen's Astrophysical
gQuantities (1963), except for the masses (Jefferies,

1953) and the inclinations of Enceladus and Dione (3in=

clair, 1972).
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Table including the relevant frequencies of each of Saturn's satellites involved in a two

body resonance. Data not included is either inappropriate or unavailable. The primary
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source for the above values is Jefferaies (1953).
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Ryperion exsmple for the 4:3 cormensurability indicates that the
first resonance variable encountered is the presently cbserved
exanple. This is due entirely to the large negative (retrograde)

wmotion of &l resulting from the resonance term. Before we proceed

ity
we should ask if this same situation prevailed at ¢rapgition £OF

the other two examples.

In the llibration phase, an adisbaticaliy stable resonance tends
to cause a retrograde wotion of either perihelion or mode, depending
on wvhether the angle variable is an @ or 1 type, respestively.

This can be seen by inspection of the appropriate equation of

vction for & or ). In the case of an e-type (:—':-)r" 1ns (2.4.3 .

3.1.7p):

= - 5%1‘1 8(~kx + 1)“-’512—'—‘)- cosd o 4.1.2)

dt)t.l

where tha ; arameter B8 for an e-type resonance variable is given by

] 4 callXl - @

oA a.a
oxXxX > o

If ¢ lidbra%er about mod{27), then B is negative. For an adiabatically
stable resonance, k is positive, hence ‘%%)tea is negative. The

angular frequency associated with thig impressed motion, in

dinensicnless time unit £(s A

wxot), is of O®). In texms of real

tire L, this angular frequency is approximately given by:
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45
(dt) (4,1.3)

a -
on !L(.S., C.(|k| 2)
res o) A o ‘

We see explicitly that the impressed motion of @ tends o blow up as
e, 0 only for the |k| = 1 case. 1¢ . is very mmall at transition,
then the motion of G“. may be both large and retrograde such that
the first resonance variakle encountered is the X » +1 e-ty.e.

The mixed-1 type can alsc lead to a large reicograde =ntion
of (I + ') if ons but not the other inclination im very small. Eve:n
830, we axpect that the impressed motion of the nodea {s 0(I} smaller
than the similar motion of the perihelion of the lighter satellite.
This maans that the e~type (k = +1) resonatce variable can still be
the first encountered unless l° is very much smaller than LR

Prom Table 4.1.2 we can see that the motions of @ anl 1, in
which the secular term predominates, tend to be squal and opposite,
and that the retrograds motion of the node of the inner satellite is
greater than that of the outaer one. (Spocifi.ally, inspect the
Mimas-Tathys case to assure yLurself that the above statement is
true,) 1£ this is the case, we shculd determine the critical value
of LR such that the impressed retrograde motion of & (or for that
matter, 8') is greater than twice the retrxograde motion of the node
1 of tha innexr satellite.

The present value of the eccentricity for Mimas is
axcsptionally large compared to that for other inner satellites

(Compere L 0.020 with the next largest eccentricity found smong
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the inner satellites: ®on ™ .00445) . Presumably the xeason lies in
the relative importance of the tide raised by Mimas witl the radial
tide raised on Mimas by Saturn and their opposlte efZects on the
eccentricity (see 2.8 for a discussion). Anothe: possibility is
trat e, was driven to & large value through a previcasly established
e-type resonance with, say, Pnceladus which since has baen disrupted.
In either case, it means that we should look at the e-type resonance
involving the pericenter to Tethys to determine the maximmm value of
e, such that the variable {$ = lui -2

Te
Te
f.rst. Using (4.1.3) and settiny C = -1 (which 18 approximately

- 3__} is encountered
Te

correct), we f£ind tha* the f.pressed angular frequency (ﬂ,r.) L]

8 = ]
0,) & -730°/yr is

i

(4.1.4)

This value is extremely small and shall receive more comment later,
Por the Enceladus-Dione example the largest possible retrograde

motion results from “he resonance with the perihelion & of the inner

satellite. Ma%ing the same approximations, but this time setting

as
(—=E)  equal to {-2 % 152.57°), we find that if

dt res
1}
o DL TEa ;0% {4.1.5)
°m Mo (@3 '
dt res

-hen the first resonance encountered was the one in which the pair of
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satellites is presently captured. W¥e shall discover later that a

reasonable estimato for ., at transition ia ~ 10“.

Ve now see that the ‘021102 description of tidal evolution
through an ordered sequencs of wellespacud resonance variables only
applies Lf the eccentricities of either partner of the resonance are
not too small. Otherwise, it may happen that a variable much as
{A = 21" + &) is encountered first. Whether or not capture occurs
shall be our next topic., But hefore we proceed, we should ohserve
that the one dimensional model so carefully constructed may fail
under certain circumstances.

Consider the implication that the ralative order of the
resonances may be interchanged dependirg on the parameters e . I°.
etc. It may happen that two resonance frequencies may nearly over-
lap, It i» no longer necessarily true that the rescnance system can
be described by a one dimensional Hamiltonian. Normally one expects
that an e-tyre rescnance (f.e. bix) v a) is stronger than, say, a
mixed I type (i.e. b(x) « II'). Then, hopetully, a reasonable
approximation would be to ignore the mixed I type. But if e, is very
small, then the dominant resonance may be the mixed I type.

Another possibility is that e, is so amall that the corresponding

zesonance variable is well-spaced from any I type resonance at

transition. If this value is less than the critical value, then the

system will automatically enter the libration phase with an initial
amplitude of 90°. Since the resonance is tidally stable, the mean

value of tha eccentricity will thervafter increase. A3z the mean
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value of e increases, the magnitude of the impressed retrograde
mot.on of the perihelion must decrease. Eventually it will overlap
with an I-type resonance. It may happen that this ' type disrupts
the established resonance, depsnding on their relat:ve strengths.
Exactly what may trangpire in sither case would regquire a rigorous
2xamination of a two-resonance variable system subject to a constant
svplied torque.

Does e1thur case have relevance to the previously discussed
examples? In the Mimas-Tethys case, compare the value of e Ore for
whicn these two var:ibles overlap (4.1.4) and the present value of
xm.l're' We find that the latter is of 0(10) larger. Por this
example, it appears that if the two resonances overlap, the mixed I
type still predominantly dctermines the fluctuations in the mean
longitudes, A and A'. On the other hand, if we make a similar
comparison of the variables (\m - zxm + Q) and
(Zlm - “‘Dt + nm + ﬂBn)' we find that the coefficient of the

e-type is 0{(10°) greater than the mixed I type.

S

1 seams unlikely that s, is or was aver as small as 10 °. I¢

this ke true, then Mimas-'ret)‘y:‘evolved through the sequence found
in Table 4.1.1. The first resonance encountered was the 12 resonance.
Presunably because of unfavorable initial conditions at transition,
the system evolved past this resonance and later approached thes IT!

Zesonance. The correspondingy rescnance terxm in the disturbing

function R has the form:

Ty e K- i mwﬂlhpﬂ-auknu&m“m RN NP R N )

Ao eal,
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»
Te
R) o, " :,;:!Hib‘uu'ou)c cosé, {4,1.6)

vhere the dependence of the inclinations on the action variable x

is (2.4.4) 2.6.1):

I, (x)

-I-L ® (=X ¢+ 1)1/2 ]

i

I (x)

= Ly 5 4 1yH2 “.1.7)

°re Tire

g, 2 fth x §

The mase ratio —— o Thus the variation in x,“(x) w. x is

e
(#’ times smallar than a corresponding change in !Mi' This also

applies to any secular change in the inclinations after libration
is established. The factor C can be expressed in terms of Laplace
coefficients (2.2.15) and numerically svalusted (Tisserand, vol, 14,

P. 100, 1896)¢

k]
c = - top{Z) () = - 0.40%6. Lo

The probability of capture is determined by the dimensionless
parameter § which occurs as a factor in the pendulum~like term of
the Hamiltonian (2.1.5), The approprtate parameter in this case is

{obtained by dewidingbyZe-1/2 Ii L, )
ML TMA
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-3
cx 1
o, 0 i
b l:'reA M _, g e “4.1.9)
o Pooxre™t Al e 8rg

The mass ratio cccurring in A is v =+ while :Ei - -nl-“-kl_z/3 - 2'2/3.
oxx 17 L .
Evaluating 8 with the present values of the orbital parameters, we

£ind

-
Bm' - - 1,02 %10 , 14.1.10)

Compare this with the critical value 8 el & - 0.27 for which the system
automatically enters the libration phase., Innidently, the
inclination of Mimas would have had to be °1 for this to occur. ' The
present libration amplitude (97°) and the small value of Bm
indicate that 8, evaluated at transition, will also he small.
Therefore the approximation cleveloped in section 3.4 ‘n the lim.t
ll’ol << 1 can be applied to this resonance.

Neglecting the effect of the x-dependent term in the tidal
torque {2.10.6), we find that transition occurrved when bm L] 0.28°,
or when the mean inclination of Mimas war one-tifth its present
valye. Allan {1969) included the effects of the x-dependont term and
determined the value of the semirajor axis and the inclination for

each uteiuee when ’m » 180° nupexically. Hig results are;

- VWO‘&H%‘M&M“A#: Mt g ed Bt DGR ek o TSt eaas e S e et
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a = 0,9922 a (now);
Oms ng
b4 N s 0,277 I)u(now) = 0,%415'6;
{4.1.11)
a, *© 0.9922 L 0.9922 LI [now)
T®
I° w 0.945 I.n(nov) - 12046,
Te
Calculating B using the above values, we find
By = 44 ¥ 1073, (4.1.12)

Since the value of the parametar B° is quite srall ~ompared to one,
{3,2.12) can bs used to approximate the probability Pc for capture

into libration.

. 4 -1/2 s 2 Y 172 a3
LA 21817 to & 201 + 7 18]77 = 44w, “ :
2
Note that b(x) is proportional to (-x + l.)V2 (-T};x * 1)1/ and that

the mass ratioc of the inner to the outer satellite is ~ I%- Thus

b, (0) equals 1/2(1 + 73 (8] where & equals 8. Sinclair found
through numerical calculation that Pc ‘e 4%, which is in agreement
with the above analytic result. The probablility for the first
resonance encounter can be estimated by camparing the appropriate
function b(x) for an 12 resonance with that for an II' type. for the

k = +2 case bix) iss
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2, -2
(16 2 B 4
Bix) = 8{-2x + 1) = 4;‘-‘!;—-——3— (2% + 1), 4.1.14)
£ 4 u:x’*raam.

Por the 1’ resonance, b (0) squale 2|8]. The coefficient C(1°) can
be determined by comparing the lowest order contributions in the
disturbing function to the 12 and II' resonance variable. We f£ind
that €(1%) = - 1/2(21'). (Note: to cbtain this result set

Ln=4 m=4,p =1andp, =0 for the 12 term. Por the I1' term
set m « 3.) Py the way, sirce c(lz) is positive, the !2 resonance
variable lidrates about the mod(71) position. Finally, the nlati?n
between °c(12) and rc(u') can be found by comparing the equations
(4.1.9, 4.1.13, and 4.1.14). Specifically:

I
(.
2 . 4 Mi
P AT & iy

12 e 1) 7 7.0n. (4.1.15)

°ra

Sinclaiz's estimate for this case is Pc (xz) ~ 78,
Incidantly, Allan found that transition ocourred & 2.2 x 108 years
ago using (2.9.4) and Goldreich's estimate of the dissipation

5\. Thig resonance appears to have been

function (0]} = 1.5 x 107

established well within the age of the solax system (v 4 X 109 years).
The naxt case we shal. discusa is the resonance invelving

Enceladus and Dione. The celevant part of the disturbing function

iss
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@ = 2ce  com 4.1.16)
res  a,, Bn ’ e

From Jefferies (1953), the factor C approximateiy equals ~ 0.753
while the coefficient C' belonging to R' equals v-117 . The

relevant parameter R for this type is:

ce3
" o X
g . 'um - ‘n___B: I —g . x‘n—-—"“ 42 4.1.17)
‘e~ “oxx®pien 8%, DI &y,

The parameter % is obtained from 2.6.10 and equals 1.59. The rass

m
En 1
ratio of the satellites is ;': & i Calculating em, we £ind

Bm ==10, (4.1.18)

Since the critical value B, & - 0.27, and |B°| rust have been
larger than |Bm|. we can conclude that the system automatically
entered the libration phase with maximum amplitude of 90°. Since
Ieml »>> 1, the relevant approximation of tne Hamiltonian applies
(3.3.3). Using Sinclair's quoted value for the libration amplitnde
(omf_,l.'s'), the change in e since transition is obtained from

(3.4.1), We tind

1 -4
— & . N
e, "o Blm)n “32° 1,1 » 10 (4.1.19)

The relation between the initial and the present values of the
parameter c(t) occurring in the Hamiltonian equation {3.4.4) is

given by
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c _este 4.1.20)
now 42 o * b
The change in c(t) is directly related to the change in the
commansurability relation by (2.9.9). BExplicitly:
dnr dn,r
c{t)h _ T ) & «fn “2n ) = TR = 2=y,
ox o “en °bi1 dty, Aty
{4.1.21)

T is the time since transition. Of course c(T) = Cnow’
The change in the commensurability relation can be expressed in
terms of tie present average value for L (°5W~ - l./l’(«max + 'min”

using (3.4.8, 4.1.20). Namely,

a
Pi, En -1
a{TIA__ x = —=(—==)Ce_ (now), {4.1.22)
oxx o L7 aDi En

whare we have assumsd that the mean motions (and semimajor axes)
have changed little since tranaition. Observe that the right hand
side tends to vanish as 'En increases. The implication is that the
approximate conmr bility ds toward an exact one as th system

evolves. Goldreich was apparently the first to make this
observaticn (1965).

The pext step is to determine how much the mean motion and
the semimsjor axis of Enceladus have changed since transition.

Assuning the same dissipation function for both satellites we find
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4 & dn
(;nl - zdl'-) 50.28 o5, 4.1.23)
ten 9%y En
Since the resonance only weakly affects the motion of the mean
longitudes in the limit [8] >> 1, we £ind, for example, that the
change in the mean motion of Enceladus since transition, Anm. is

the fo'lowing.

dng
gy & o T =Sl A (T & - 0,002 my (1) (4.1.20

whera Ac(T) equals c{T) - e, ™ 41 c(T). This corresponds to a ch

in the semimajor axis Aazﬂ of Enceladus given by {(using the

approximate relations A‘: & - %A—:)l
A'zn = 0.021 azn('l'). (4.1.25)

Using Goldreich's estimate for Q we find that the transition into

90° libration occurs when

T = 1.4 x 10° years. (4.1.26)

Again, this appears to be an estimate within the age of the solar
system.
Titan and Hyperion axe also pregently engaged in an e-type

resonance. The relevant part of the disturbing function is:

R - Yni g, cosd {4.1.27m
res "o, ““ry * o
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From Tisserand (vol. 4, p. 107, 1896), we £ind

C = +3,26.

As C i3 positive, thig resonance jariable librates about the mod (x)
instead of the mod(2r) position. The mass of Titan is 0(103)
greater than that of Hyperion which implies that 1) the tidal
evolution of the rescnance is caused alwost entirely by the tidal
torque acting on Titan and 2) the effact of the resonance on the

orbit of Titan is almost nil.

We mentioned in section 2.9 that the x-depend term iated
dn_ (x)
with the varjation in ., with x is small although a naive

estimate of its effect seemed unusually large. The reason the

estimate was wrong is that we assumed that the fluctuations in the
S

tidal torques were of 0(-5) and ignored the fact that one tidally
o

drivenpartner amight be much more massive than the other. The

an, (x) ' | I
fluctuations in Ty are of DfE~) where x' = Lo . Since
Ti 3 I'o Mpy
the ..ass ratio m ‘s of 0(10 ™), the contribution from this term

to tha tidal evolution of this resonance can be safely ignored.

The
parameter Sm for this case is

-3
e~ (now)
B e s Ty 2
now — TMe aZRy oxx 2 L2 *
0Xx ‘ﬂy k3
My
Using ot = 2.4 x 107 and oy POVl = 0.104, ve find
8 oy = - 0-0575. 4, 1.28)

ey DI e Mt 4G, G A o bl S o AL WARANLA N NIyt Sl e SaraTiz
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Incidently, the value o? °ny corresponding to By = 27 s

e = 0.087. (4.1.29)
1
“ry

The above value for § now is certainly close enough to the critical
value for automatic transition that we should expect that it did
occur. This mode of transition can be inferred from the following
argument.

Assuming for the moment that the limit 3| >> 1 can be applied
to determine the mean value of the eccantricity at transition, we
obtain the rasult

°°Hy = sLn(Om L] 36.2').,"}’(00') « 0.061 {4.1.30)

- ew(mv) .in(tuv‘ = 36°).

This lirit represents the fastest possible damping of °m for the

smallest possible change in the tricity of Hyperion. The
actual change in .HY since transition must be greater than the
above value. Thué this value (4.1.20) represents an absolute
maximum for the value of e at transition. After comparing

HY
e with (4.1.30), we can infer that capture into 90° libration

cl

occ:zrod. Unfortunately, we also see that nejther approximation to
the Hamiltonian (i.e. |8] >> 1 and |8] << 1} can be rigorously
applied to determine the evolution of the systam. Brt we can
attempt to match the solutions found for the two limits to obtain

an estimate on the evolution of the system since transition. The
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208t reasonable value of 8 to match the two solutions is 8 e That

is, wa shall demand that the system evolve backwerd in time according

to the solution obtained for [8] << 1 until bix) = 8 oys Before that
time have thia resonance evolve according to the solution found in
the limit is! »> 1. A more rigorous derivation using the action

integral ia given, following this argument.

The present valves af 8 and ’n are 0.0575 and 36°, respectively.

Going back in time, we find that when ble) = Ecl at time T, bix) .
has decreased dy a factor of .21, This means that, sinze b (x) is

sroportional to °Hyb‘)' the value of :Ry at time T s

’e‘ay - 0.211em(wv) = 0.022. 4.1.31)

Prom figure 3.4.1, the libration amplitude at time ¥ is

°m = 34°, {4.1.32)
The relation between :ay' a  lnow) and the parapeter a(T} ia

e

) N TR AN SL LR (4.1.33)

By

where we have chosen a (T) + 0 at time T. Since oy 20V} 1 Tuch
larger than ;Hy‘ faf?) + 1} & aln),

The nass of Nyperion is much swaller than that of Titan,
implying that the resonance has not affectsd the tidal ewolution of

Titan. Therefore, the change in the mean motion of Titan since
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time T &g
fng, = -:-x,:';’-i-u- -, {4.1.34)
Maitionally, the change in the comsensurability relation is
c!n_r -
Sc i) Aw!'ou; 33{;‘.('1‘ -7, (4.1,35)

2 2
where aw‘r O)i;‘“eon,auy - - lﬂeo hﬂ
The fractional change in n,, can bs related to the present value of
eﬁy using {4.1.33,34,38):
2
dn,, =+ 6bc('l‘)«9‘my L & - 0,088 n,, (nov), (4.1,36)

The changs in the semimajor axis of Titan is:

Aan & 0,043 L {now} . {4.1.37)

Finally, the age (T - 7*) corresponding to bix) = 8c1 is

@?-Ty=7x 1010 yeoars. {4.1.38)

We see that this event occurs befores the formstion of the
solar system. Pressing backward with the second approximation
i.e., 18] >» 1) we £ind fram (3.4,1,4) that the mean valua of the

eccentricity at transition is

“opy " sin34* e}y 2 p.016. 4.1.39



23

SINg,. | T 30°
04t : b
1 - 15°
o2 {
0 1 L1 h 11 | i G’
o 2 49 6 8 10 12 14 (8 18
|- 2¢(h)
B
PIGURE 4.1.1

Plot of o and sing verms (~r7Sly) for the Fitan-
Hyperion resonance. The f dashed line indicates the

present values for these paraweters.
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Rather surprisingly, the above value foxr L agrees reasonablv well
with Greenberg's (1972) estimate of 0,015, The change in Titan's
semimajor axis up to the time T, a . ' the value for T, can be
detexmined with arguments similar to those applied in the Enceladus-

Dione case, The result js:

10

da, & 0.0125a, ¢ Ta2x10 " years.

Ti

Thue the age of the resonance and the total change in Titan's

ge dmajor axis are:

10

da, ® 0.07;1,1(now); T& 9 x 107 years. {4.1.40)

TL

Greenberg estimated that transition occurred 4 x 1010 years ago.

A more accurate estimate of both the age and ths change in the
orbital parameters can be obtained via the action integral. To
make use of the action integral, we must first reduce its
dependence to a single unknown parameter. I(f we evaluate ;, H and
e at ¢ equal to ’m = 36° whare o vanishes at time T (corresponding

to the present), we find

172
¢} =0 = ex - c(T) +1/28(x + 1)/ cosd_, (4.1,41)

=0,

/2

o172+ () 4 Blax + 12 cosp_
0 n I

By

{-'5) - t-x_+ 1}/2
Co m
Hy
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The explicit dependence on x, a8 it ocours in H can be eliminated

in favor of g,. Thc result is

1 -2 2 2 &n
He )" 87 cos ot o 8 cosy, . (4,1.42)
° °
Both S(SBO) and e, are unknown guantities. They are related
through the relation

®s,3
Bma (;) Bo- {4.1.43)

Thus (4.1 42) can be written as

s1l8inag 2 2 m, 4
4 8(.) amcoaon+(::) smooso

X v 4.1.44)

or ¥ is propurtional to (Y. 1f |8 | > 0,27, then 3,y eqoals
o .

(-27). Therefore, the equation we wish to minimize as a function

of eo is:

Jyqp, 2= 0= fud 4 21 . {4.1,45)

The action integral J can be mumerically ealculated as a

1lib.
function of eo and {4.1.45) minimized. The resuvitiag values for
the parameter.. are:

°°Bv = 0.022¢, B8 = <5.85,

€, =262, e =20.1.
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The change in the parameter c(t) since transitinn .s related ¢3 the

change in LS by

1
A“’:‘i - E(c('l‘) - co)awro

-nﬂy.n'l‘.l.

The corresponding age T is 6 % 1o’°

years which is in reasonable
agreement with our earlier h-iristic calculation. The evolution of

the parameters as a function of c(t) can be found using the same

procedure as outlined in (3.4). Pigure 4.1.1 is a plot of the average

eccentricity (= 1/2 (ew = €,y and the amplitude of libration as
a function of the parameter (1l - 2c(t}/8).

1he reasonablenuss of these calculations is naturally
conditioned b+ the initial acsuvptic..s. Clearly the most crucial
of thesa is the dependen.e of the tides on a constant § which is
the same for all satellites. If Mimas could have risen from the
seas of Saturn, Pnceladus and Titan would have been nearly motion-
less spectators to the event. Only a 6% and a 1/4% change can
occur, respectively, in the orbiils of Enceladus .nd Titan. Thus
"aignificant” tidal evolution is lliuited to tha closest satelljites.

Perhaps one way out is to say that { has an amplitude

d d Qlet's g that it's proportional to thc height of the

{4

tides raised on Saturn's surface). Because of its greater mass, we
might exvect that the { for Titan is significantly larger than it

is for other satellites. TIhe amplitude of the tide is roughly
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proporticnal to he gradiert of the force at Saturn's surface.
Explizitiy:s

Tide meight &3, (4.1.42)

Compazing the tide height raised by Titsn and by the next

strongest case, Tethys, we f£ind

Tide Height by Titan

Tide Peight b - Tethye v 10 “.1.43
from vhich we might conclude that it is at least possible that
Q‘l‘iun is significantly larger and that the age estimate for this
resorance is within reasonable bounc . But if Titan's tidal torque
is greatar, then why nut Tethys'™ The tide height of Tethys is

about four times greater than that for Mimas. The problem i{s that

the two tidal torgues nearly 1 in the surability relation
q
e . S R
’
tui dt're 0 d::u {4.1.44)

with Mimas just barely winning the battle., If g%:-‘ were just a

few percent larger, the resonance variable becomes tidally
unstable!

We should mention that the probability fur capture is
increased siightly (= 18) by .he x dependent term in gf(x,e). But
it also happens that the ages and the capture probabilities are

significantly affected by the asmumption that both tidal torques
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obey (2.9.4), indespendent of the value of Q.

In the Mimas-Tethys case the values of the orl'it.l parameters
was significantly affected by the fact that the x dependent term is
an important factor duraing evolution. The relative damping due to
this term is large only becsuse the two torques tend to cancel in

dn_ -
the commens irability relation (41.142;. "!d k
'

'

[}
| |
" > dt.,“' then

the x-depe dent term is much less of a factor. The evelution of
the rescaance is then accurately described by the soluticn obtained
for the limit |o} << 1. Of course this means that the initial
inclinations were lesg than predicted by Allan. Going back and
repeating the calculation we would find that the prohability for
capture for the If' resonance is increased to 7-8%, while thzt for
the 12 resonance is increaced to about 108. Contrary to
expectations, the ac sonance is dec eased significantly
by about one flfth, .tuation holds in the Enceladus-
Dione case if

‘dn'l‘ I 14
!

PP mere——— .
d‘m' j9%py !

We've already noted that the dissipative term plays a minor role
during capture and syolution in the limit |8} >» 1. But the
cancella:icn of the tidal torques does affuct the cammensurability

dn,r dn,r

relation in the original problem, However, if -——— >> '
dtm dtDi

the age of the resonance is decreased by a factor of 0.28. Thus,

the age of the Enc .adus-Dione resonance ray be as small as
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4 x 108 years.

Although we've generated many numbexs concerning the ages and
evolutior. of the various rescnances discussed, we £ind that gocd
ruslkers are hard to find. This must be accepted as an excerise
which demonstrates that Goldreich's hypothesis is proba’ily correct

but that it generates more puzzles than it solves.

238

4.2 THE LUNAR-PLANETARY RESONAN"E HYPOTHESIS

The m.on, like the satellites of Saturn and Jupiter, is spiraling
away from the earth due to a tidally-induced torque. If a simple
tidal model is invcked, ard if the present value cf the t:dal
acceleration is used to determine a constant dissipation function or
Q-number, then several investigstions have stown that the moon was
within the Roche Limit less thsn two billjon years ago (see G- reich,
1966). As the earth-moon system arpea2rs to & much older, sfom¢ .ing
else must be invoked to resolve the time-scale paradox. Thd mast
plavusible solution is that camplex factors influence the tidal torque
and that, contrary to expectations, the energy dissipation factor may
have been conesiderably less in the past. Pannella, MacClintock and
Thompseon (1968) ecxamined the tidally induced p.:iodicities in the
deily growun structures of variouc type: of sheils of widely different
ages. The implication they drew (fig. 4.1.1) is that the tidal
torque was both variable and also probably less in the past, bteyond
approximately 70 million years ago.

R. G. Hipkin made the novel suggest.ion that perlaps the time-
sca.e paradox could be resolved if the moon were trapped for an
appreciable time in the past in a resonance with Venus. Goldreich
had already shcwn that partners of a resunance, subiect to tidal

torques, tended to maintaia their near commensurabilities through
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FIGURE 4.2.1

Plot of the number of days per synodic lunar month versus
entinated age of each sample. Tiis graph is taken from an
article by Panneils, Maclintock and Thomison (Science,

Vol. 162, pages 792-9€, 1968). ¥Hagel and Waller determined
that sume of the uge eatimates wure in vrror, and this was
acknclwedged by the alove authoxs (Scisice. Yol. 164, page
201, 1969). The dashed line is the result of these

corrections.
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& transfer of angular nomentum from one partner to another. Thersfore,
& hypothetical lunar-Venusian resonance could transfer angular
momentum from the lunar orbit into the much larger orbit of Venus.
Hipkin reasoned tha. such a process would negligibly affect the
Vanusian orbit, and would effectively trap the lunar orhit at a fixed
zadius over the lifatime of the resonance. Me iz presently working
on this problem, bamically using the same approach as outlined hare,
axcept thet his soluticn is apparently such more pracise, It should
be mentioned thet in his solution (and hare also) the planetary orbits
are assumed to be both circular and coplanar since otherwiss the
sxpannion and e:aluation »f the relevant coefficients become
incrdinately difficuit. Mut in calculating the effect of second and
higher order coupling, Miprin does take into account the coupling of
terms in the expansion proportional to the eccentricity of cne of the
resonance partners before setting the planetary eccentricities to
zero (Pesle, private communication). We shall £ind later that the
approximation of circular nlanetary orbits -ffects the maximmm value
of the resonant “"‘.“. On the other hand, th: .tude of the tidal
torque in the paet (s not well establiched eithear. Therefors, tiw
€irst step should ba to calculate the relevart gravitational torque
with approximations which simplify the calculation as much as
possible, and comparo the Magnitude of the rasonant torque with the
prement value for the tidal torque. If the sidal torque is wuch

greater than a given resonant torque, then there is no need to
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*urther refine the calculation. The implication in that the tidal
evolution of the lunar orbit cyuld et be arrestnd by the givan
resonant interaction.

Venus is chosen as thu most likely parther in any resonance
because it induces large purturbations in the mean motion of the
moon due to its relative nuarress to the earth, Although Jupiter is
mch mcre passive than Venus, a counierbalancing factor of (:_c_)a
entexrs in the development of the dissurbing tunction, where t:n
integer c is the ratio of tho synod.: mean mot.ion 0f the moon to the
synodic mean motion of the dinturbing planet. The vatio ¢ is - 14
for Jupiter and - 20 for Venus. A :rivial calculation shows that
2 51 22.92).%% » praasibie partn t considered

{ T P partner, not ¢ or by
Hipkin, is Marcury, which has the umallest ratio ¢ of any planet
(-~ 4). Hipkins' original argument. spplisd only to resonances of the
synodic type, Dut as we have seen, the simple e-typa should also be
considered, because of captuze censiderations 1f for' ne othey reason.

The method followed :n cete:mining the first and second order
contributions of the disturbing fui tions acting on the moon is the
procedure outlined in secrions 7.2 sand 2.5. Naturally, the first
step is the expansion of rhe relavant disturbing functions. They arer

Oisturbing Function Acting on the Moon by a Ftanot.

= @ - . ’
R(p..;)):)v'p(% - %&D); Azl§,+Dl; 6-,;’-:?“‘. {4.2.1a)
\ L

’ “57’~'w“."'“§"', ARECTY ¥ RN Ry prvirmpR e T LSO
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Disturbing Punction Acting on the Zarth by a Planet.

- 1 ’
R(P-DO)')'p(n - 2:3:,”. »)
P
Disturbing Function Acting on tha Moon by the Bun.

e)

R(O-»»)-m%l- !:-i-’b); A=t ol
0

Pigure 4.2.2 shovs all the relevant radius vectors and angles. T
simplify the expansion, we shall make the approximations that all
orbits Are coplanar and, except for the lunar orbit, ace circular,
In addition, the motion of the earth about the barycenter shall be
neglected in each of the disturbing function. This muzion can be
included in the expansion by expanding thes rulevant vectors akxut the
barycenter of thy earth~moon system (Plummer, 1960), but the axpected
arror introduced by neglecting it s of 0(?; ";}) and is small
compared to cther approximations to be invoked la'er. Finully, the
intera-tion of the moon on the planetary pertner will be ignored
because of the planet’s ralatively lazger mass and angular momentun.
Since the interaction between tha planet an moon will tend to
conrerve angular momantum, any change in thun lunar angular morentum
produced by tre planet will be balancved by 4an equal and opposite
change in the planet's momentun by the moon. Therafors the ratio of

the fractiona.. change iw:
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PIGURE 4.2.2

Vector diagran of the pilanet, earth and lunar positions
with respect to the sun.
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el (9+3) 2lo(0->9), . o DG

> P > m, 8pn.

The above ratio indicates that the perturbatior of the planet's crbital
elements by the morn is cuite negligible. Therefore, we only need
determine the first and jecond order contributions of the previously
mentioned distirbing funstions. Starting with the lunar-solar Jdis-
turbing function, R(0 + 3 ), let's fivst expank the direct part A'l

{2,2.1).,
=1 2, r
A '2.'. ("’b P, (% .
22 "0) (7, 085).
The indiract part ¢f R(® + D) will exactly cancel the L = }
texrm in A'l, wille the /. = 0 tern doas nct contain any of the lunar

slements and can be dropped. ‘he result js (2.2.1)
R(CaD) =} S::i'-lg(h)kv (% F
Ao 2 5g (35) PulTy Ty) .

The facter of (~1% is 1atroduced because 4 is the sum rather than
the 44 zance of ;) and ;0 + %he Lagondre function can first De
expanded in turms of the spherical harmonic fuictions, and the
aphericsl harrionics in termc of the inclinatior function P,.'h'pu)
$2,2.5). Tho result of this pair of sxpansioni, under the assu—ption

of co-planar xbits, im

L .
' yola-mit 1 (8.6 2,8, & imCye
R(e D)”‘egt‘, :;’::}" {iomi'. ao(a'o’ !‘ﬁ,n,l-m(o)| (u,) L )o

Low £ 40,
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r
Tre final expansinn is of the function (:D-)l.imi in terma of the
Pl

mean amomaly B (2.2.8). The complete exprasicn of R{0 + D) is:

92
.l )=l i (f-m)!1l ,a,.J 25" q
Rlo~ 3 mty 52 ()4 (omL (E ) 1Pagnyian (O s £1g00)
.,n: @ "0 e LIS
’ 4.2.2)
mim(?x,-)\*)dqht,_

The expansion of Rip + 8) is sven simpler, except that D™ ghall

Le expanded in termm of Laplace coefficients (2.21.15):

1 A )
R{p->9)=H F'l "’(w) éi*—(ﬂo)f (305-20)! ' (4.2.3)
where
&¢
A= B, .

Fote that all terms in tle above axpansion, except j = 0 are of short
period,
Tae expannion of R{p + ) ) involves the samy rrocedure, witi: one

extra step. The result of the sequernce of expansions just outlined is:

Rio- 1) oty 3 G o e 3, 00

() '*"

- -,,Z‘ B 55218y g, o p (0 e E2m )
s

o 5 (TR 12 mia 1 o G ot (20 o),

¢,n q

(A2 0 B 5 o s 8 0B b B ek
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The angle 05 i just the angle made by the vector D with reipect to
the reference frame vect>r in the orbital plane, 3 (fig. 4.2.2). This

sngle (s related to lp and A° through the following relations:
D. ~l(a,-%° A ).
cooly = Dek = ngD (a“-.lo A, b
" (oe) + B%onNp)
t 2 Bo (‘-(\“ nie
sir.'}b « Dok = :xoT)'l(ain)O-%;:inXp),

from which can be derived, after a binomial upanuol'u
™
e-in?D _(%D-l )lml?—:%(_)e(%:)a(:be is)p e-i(m-a).\o_

- (L4(mf+1)

The final form of R{p +» D ), after expanding D , i
o-ae
R(p-» D)= L*vz_,( eee w)lzx,,,,
J- (4.2.4a)
Jnm=ur

.(%i)i(gglmb1 1("‘)3:‘( ) (Gp)ﬂd'ﬂv\b iam 0,3, J'

vhere

B,:’. m()’n)‘)iq(kb-’;‘c)*(J's\ (AP->°)- (4.2.49)

(’m,q,

Pram the syrmetry proyerties established in section ” ? the above will

collapse 0 & cosine serie. The exponanti=l can be replaced '~
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10m,q,8,3
#e TR te Kmt‘hj‘scosoquvsvﬂf

H{m), if m#0, 4.2.5)
H(n), if m=o, ar0,
Km,q.j-s = {n(s-8), 1 maq=0, I-£40,
Ik2. if r=quj-n=0;
(1, '1f :>c,
B = io, 1f X¢O
A given angle in the series has fixed m,q and (4 - s). Those terms

which have the same $ are made nore obvious if u new summation
variable, p, is introduced,

p=3-as,
ard the variable s ie eliminated. Singe the resonance partners of
qgreatast interest are infaerior to the earth, cloose a, = a.. The

@
result of these cperations iss

R(ps D)= §§ f:é(-)iKm,t),p fé:—::%i IFHN}_?;(_O‘ZX%&@
n=

=0
D= o

a 20 oo b3 Il gy
'(E;)L %(-)(P -3 (bfjl)bg»m-»l(“)coadmtqtp'
{4.2.6)

Te ratic (?) . 4—;3 , implies that the 2 =  term should give the
®

aminant contridution. Tho inclination function F L m(O) {2.2.5)

2,m,

PP SN R R R L L IR O T SR PIF 7N WISy ciau el ARERNML LG L FIO Ale sRav L Y os
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is
Fyom,g-nt® ® —7'("—‘L'—‘.{;m = °°3(“(’7‘"m))- 4.2.7)
MR 2 (581 (557 :

which vanishes for (% - m) odd., Given L » 2, |m| is restrictec %o
the values {0,2). Por a synodic type resonance (g = 0), the £ = 2
term i the above expansion cosrespor ‘s to twice the commensurability
ratio, or a double aigle resonarce. The disturbing function contairns
a
a factor of (-2)1’ for a given 4 and would be raised to tha
ay n,q9.p
eighth()-8) and fortieth':40) powera for Mercury and Venus,
respectively. The lowest order contribution to the single ancle

resonance is contaired in the L e 3 term of the axpansion. A rouch

comparison of the coefficients of the single ard dcuble angle terms

is given by
%doub]e encle) (2 (2;)°,
#in~le an-1e) 3 Y '8y

Calculaticn of the sbove ratic indicates that it is within an order
of magnitude of unity for both planets. Therefore, both terms shall
be explicitly calculated for thn synodic case. For the strorgest
possible e-type resonance, 4 = ‘1. 2s |m| ® C.2 for the £ = 2 term,
the lowest order ccntribution fur the e ‘ype corresponds to the
sinmle angle case.

e lowest oriler contrilution to * ‘iven angle can be written

down directly, usiig the explicit, lowert ords* wxpansion of the
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eccentricity function xS _(e) (Table 4.2.1) and the equaticn
L,m

. found from (2.2.7b). Thre resilts of these cperations
0
for thg following frur cases are:

P.l. o, xm i~m

Doable Angle Syrodic Type, 02 ° P:
vy

{4.2.8a)

a p+2
(Up=-3))p o 5% g4 4”(—’) ib @*J~2“b§ REE b{' (°%°°BGE 0,p?
sirrle Apr~le Jrnodic Tyne, Cl,o,p’ b)
) a =3 Kpra (3.0 F p+l
_ s =3 Kpa ) - 3
(Rp=30)1 0,5 T8 (G2t gt mdg ()} cosdy o o3

e-type, (;2'_1'p3 O)

(A3=21)5  oF B (@2 020y Mool 603

'°°s°2,-1,p3

o-type, 75 o o d)

(=302 3 % 2 32 0, (8175 (wo0nty g e

"he Laplace coefficients can ke evaluated using the equivalent
polynonial expansion (2.2.18). Before cilculating the above, lat's
determine the important secomt order con‘xibutions.

The indirect influence of the sun ¢n a 7iven resonance cannot be
neglected because 3¢ its relatively great mass. Unfortunately, the
effect of the sun on the lunar orbit is fo larce that an ordinary

perturbation expansion of the disturbing furct: ol in powers of the

R Y N 7

Definitions

(1) = §

(fem) __ {2-m)1 k{2%-p 28+9 0¥
3 Et ) ' } ,'_wkii ‘

!..n.!_._;_g t-m) ! (ﬂ.ﬂ"‘

where
){scos}z, c'nsiné-, ven-k+zp .2k,

and X is summed Over all nonnegative factorials.

{s-m) (. +m)t
Fl,m K m(O) = QOB( ] ) 2:(%13)!(¥):'
22 1{357p=29))
EED-B = s.).-lbg(u) e )\P L] . o= -g-").

[ mecet

TABLE 4.2.1

Table of relevant Hansen's coefficirnts, x}m. Alsc

included are the explicit definitions of the inclinstion

function F,.'m'P(I) .

250
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n
mass, or equivalently, in sowers of ;% s converges slowly (Boown ad

Shook, 1964, Lura: Theory). Since our obiect is only to deternmine
the plausibility of Hipkin's hypothesis, & calculation of the lowest
order coupling wi 'l be sufficient. Wwe found in section 2.5 .hat the
second order cont: ibution to a given term .n ic (2.6.2' cceourred in
CR,, tt.e coupling of short psriodic terms in R.. and Stio. the coupling
of short periocdic terms ) the urperturbedd Hemiltonian Ho' The
functicn GR’, in kis case, i composel of GP. (p+3) and GRB 9 +P).
The perturbation .n 6n° only inwilves the perturbation SL pe vhich
hexe is compnsed of 6!., 0+ D) amd 6!., {p > }»). Formally, each of

tlose terms is [2.5.14):

§1,= % 5;;“(621.(9-)‘)1»251;(:»-»D)ZfL(e-o))»SZL(G-»D)).
(4,2.9)

The only significant second oraer contribution to the lunar-planetary
resonance is in the cross term, 8L(p + ) )8L(6 » D). The
significant second order contriiwtions from coupling of the short

period terms are the following:

R (->D'=‘,?"ﬁa'(p-7)" . )
g1 (P->D; *,.;1.‘"", SWD(O-OD,-f('(;cP}b;?i {4.2.10a)

— )
< g%?’_{;(O-»)g,,(p,p)*g%:"s.r.(p,o))u ob)

535,(0»»)= —- 3
“y'% *o

B0 G 1A M b 8 o v L SR b, (e T RDARA I 10 B e it bt
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Here {w,J)} represents the complete set of conjugate actioa and angle
variables. The Zfunctions GL, ’ G\v) + etc,, are the short periodic
first order pe:turbations of the cancnical variables and are obtained

fram the rppropriate generating function through ths relations (2.5.9):

as(d,w 3(J, %
S = 5?!( A2FRFY S %ﬁ(""’), (4.2.11)
The genorating function S(J,w) is relat>d to the appropriate short
periodic part (R.) of each {ndividual disturbing functior. (2.5.2)

acting on the mon. If each R. is formally expressed as a transcen~

dantal ser_es 1n ¢ (2.5.4a),
Ry = A};.\seiob, ete.,

then the gene-ating functions are (2.5.17)s

d ‘4.2.128)

v (p-; 4 ) d
sw-»wpz,, Aur."ni )"@'1 orlo=d, Ve JToF
il 1 {0) =, it b
s(e..p):.)«g%_. _A.'u.[‘ﬁ.,:?).gi"s : )

" s
S(p-> =-)«pz:, %‘l’m- oiler, )
e 8
This allows us to write down 61-!° and GR. in texms of the above
formal expansions for 8 and R o' and determine which contridutions

are significanty
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P33 (.,-n)=%z ( “aos?:r ( i(ws,-vos..);u.z.ua)

")

R, (008 =p My s%_:_,s"i.(%'ww ) Ae'ébl, (%:::) el (03.*06,);
y»"wo"‘

b)

! an I0an dAg® " "
+2- %—AS,%‘(%PM %s" Beh . _'a\é_gei((?s +@s u);

sn_ =i .,g“{amﬂcgna))_a_@,uge») TL A:;,%_ ﬁi(mgﬂ’q;')}

ax, b)\, "i (-

c)

Recall that v is & function of L (cf. 2.2,3). Therefore the partial

derivative with respect to L explicitly acts on the frequency v an

the above equations.

There is the obvious requirement that each of the above angles

os., Os.. or }s- has nonzero frequency, which is derived fram the

short periodic nature of is. Because of the assumption of coplanar,

circular (except ¥) orbits, the only action variables vhich anter in

the above are L, ’ r, y Le and Lp. In the case of synodic rescnance,

the set can be restricted still further with the assmumption that the

lunar orbit is circular. The explicit angles which occur in the

above are (4.2.2,3)

m& {8, SRRt il 5 P ThaOB K B M e ¢ <0 Frad Urve ok e O owi] b o Ml 11 4% et ot
¥

S awm i E e oA g o
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Qsc"@sn"(m'*m") (7‘,-7\.)4»(:;' +qw)u’+( 3184 )¢ M’-)‘O):
05"‘(05'""‘“"(%»'75)*0.”“’7*f"()b'\)’ 4.2.14a)

Given an angle d»u 9.p
s

will be restricted to a single term. That is, the

» the second order coupling corresponding
to 0 * byu
indices m", q", and J'" are fixed. The second order coupling corres-
ponding to 0’, * 03,, will {nvolve several terms, which can be
restricted to the tarms of lowest order by minimizing the number of
factors of (-:—:) and ey which occur in the expansion, consistent with
the given angla., The ratio of the relative magnitucCe of second order
coupling of perturhations of the lunar orbit with that of the earth's
orbit in GR' is roughly

(secoad order:d La(2s\2 _ 1t
Gecond araer:o; ~ ID(EA) Q“‘fj' (4.2.15)

[
Assuming that the sum of Laplace coefficients is approximately the
ﬁu. The same ratio tends to hold for contributions from Gno.
Given that the important contributions involt. frequencie: of Olrp),

the approximate ratio is
2
(secona oraero ) (‘l') , . A.2.1€)

Thus it appears that ths perturbations in the earih® pczition
give the principal second order contribution to a given angle in

ﬁc {p + 9 ), which suggests that the second order contributions be
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restricted to 4ist these texrms. Yet another reason is that only the
coupling due t5 the firat crder terms of the solar-lunar disturbing
function have been considered. The second order tari of the solar-
lunar disturbing function coupled with tha first order perturbations
of the earth will produce a contribution of 0((:—:')2). But this is

the same order as those torms involving first order coupling of the
lunar coordinates. If these approximations are accepted, then the

principal contribution te a given angle om QP is
19

z -dm g(0=2)
(5R,) WS SRea T, g (02):

8'‘n,0,p
el
Aglo. B .
;%.( X ;:‘g;)*ﬂ%‘:‘u ﬁ Ap(p,o)g seifm,a,p,

Substituting the upucit cxp:ouions for A o, q’ 0, < 4\ ' 0 ;s We get

(6118)!n a D-f\pﬂo( ) M .l 3 Mz_(o)'?ﬁ,mk %’

4.2,17a)

b)

a-(t a7lvy {«) _
S ‘30(——3«—,,?_n )=(a5-n)"Yas 1o )

-(ﬁ +1) *eidmoq’p

The partial with rcspect to x.° can be replaced by any of the following:

3 2 ] 3 3 2% 9 {4.2.18)
—_—meemt ol g e el o D 2,
3!.. LI 2a =§ 3na ”0‘0 3a
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vhere o= 2P, L.=ﬂ,ﬂi-
8
Next, the exponential {l/him'q'p) can be xreplaced by colén ap’ and
LA ¢
9
finally, the explicit forms for ?!.,n,_g:gw’ and x,”n(c ) can be
2
substituted into the above. Using the relation for Hge
. 2.3
206V
HpEiigngt,s 4.2.19)
and the approximation
-} = =
P(ny-ng)=-(msq)n, +mn 5= (meq)n,, (8.2.20)

the contributions from GRs for each of the augles already considered
are:

Pouble Angle, ’2,0,p=

(6Rg)0 o, p”6 ( ”)2 r'?‘(‘:ﬁ')*?'”’ “4.2.212)

233,%) bg(ﬂ)f 00812'0,p=

single Angle, 01 'O-P'

9,010,558 87 Bafrelin ot "

2«%)1);(:1) 3 cos{,‘l'o,pg
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e-type, 02'_1 .Pl

. ~ =9 A 2 6
($Rgrp _1,0% ‘Fg%‘;z(%:) %; f('('np'!-!n‘;)”‘sp* {4.2.210)
T
419%)‘:‘:%(1)} 008@2'_1 99;

e-type, 00'1.93
= 21)2 Lo, _gob(a)?
“R:.)O,l.p"'é‘%:"(n:) n:{'spbz(“).ic”do,l,p' 2 id)

Tha integer p is negative, implying that each of the bracketed terms,
which are sums of Laplace coefficients, is positive. Comparing the
above results with the direct part determined earlier, we see that
both contributions have the same sign for each angle.

The next step is to compa:e the lunar tidal torque with ths
raximon torque dus to resonance interaction wisi the given planet.
I¢ the torque due to the action of the planet is conspicvously larger
than the tidal torque, the tentative conclusion is that the resonance
is "tidally stable.” For this comparison, the secomd order equation
of motion for tha angle variable ¢ (2.9.17) is most useful. This

equation is approximately

P
4 2 de =
A 'Y - 0
—i r ﬂlﬂirw + A xx ﬁ 0. “.2-22’

The units of the coefficient A.wkl are t!ag"z, and the scale of this

coefficient is set by the factor

R AR A i o
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The facter Acun: is the second ordexr coefficient in the expansion of
the zero order Hamiltonian (2.7.2d). Since the resonance has little

effect on the planets involved, A o3x is approximately given by:

2
~ 3(m+
Agyx = -157-—‘11 . 4.2.23)

2y
2 a
The tidal torcque term {Aw 3t} acting on ¢ is (2.9.10,17)s

2 A8 s _(n,o)dN5 5o,
Aoxx % 5 -(m+adag?® (4.2.24)

i W
Tha cldest determination of Ty is that of Spencer Jones.

2

dnp - -
(getlg g, = 1" century 2 0301 % 10723 rad/mec?  14.2.29)

Recent investigations by Newton (1969), van Plandern (1970),
Morrison (1971) and Oesterwinter and Cohen (1972) indicate that
about twice Spencer Jenes value is a more reasonable estimate.

The functicn Alcoso is a term in the disturbing function related
to the resonance, and is the sum of the contributions from the

direct and indirect parts. Explicitly,
Ay = AMpHAqg = (RI"RII)«p=2n' 14.2.26)

Another interasting question is how long ago the resonances werq
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established. A rough estimate of the time, Tm.qcp trat ’n,q,p

approached zero and then reversed sign is given by (Allan, 1969).

ang )
2 hcl | VIR - LV S
Tmap T T3 M E B T 14.2.27)

doy
T ® is calculated ucing Spencer Jones value for —a—é-u (4.2,29)
’ 0

gince it appears that the more recent determination applies: only to
the present value and rot what it may have bean in the distant past.
Table 2 contains the relevant parameters needed to calculate

onx‘l' Table 2 has the numerical valuas of the reisant sums of
Laplace cosfficients. Table 4 has the numerical evaiuations of AID

and A the estimated age of the particular resonance, and an

11’
evaluation of their tidal stability.

The resonarce angle en a.p has bee~ (onstructed so that it
rde

secularly decreases in the ab e of the r . Therefores the

analysis of capture and the stability developed in chapter three (3)
Jdirectly applies. At the end of section 3.4, we mention that there
are various types of stability, the most important here being the
"tidal® and “"adiabatic® stability. Recall that adiabatic stability
is governed by whether the magnitude of Al is increased or decreasned
by the long term tidal interaction guch that the amplitude of

1ik. ation decreases with time. For e-type resonances, the leading

tactor is e(x), whare

e 3 =
Tom(oxe )7, a3k, (2.2.20)

Planet Semimajor Nean fags
or Axis motion n Ratio
Satellite. (A.U.)
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Eccen- Inclinc-
tricity tion to

S . Eelipsie,
R 107 ‘aec™ \Mp”/l..g(“l'o-q - T
M_efcigif 0.3871 8.1396 0.165 0.206 7%
Venus @ 0.72331  3.230 2.4 0.0068 3%3
Barth @ 1,000 1.974 3.04 0.016% —ecee
toon D 2.57 1073 28,37 0.0376  0.0549 5%, ¢
[ %
] = .00845n, = .113n’ (orosrade).
7% %5 =-.00401n,, =-0.0536r, (retrorrade).

TABLE 4.2.2

ORBITAL ELEMENTS FOR MOON, EARVH, VENUS AND MERCURY.



262

i YERCCRY —1
‘ Ml il ST TR, U T Y
%2,q,p :.mu:c | mamerical value !"* ocoeftictent numerical value Dleturbat rﬁ—?,ui#,ua Lauy e {map '!.Q:P o
: 40 39 26 | .. A PV ne o rdat
B0 Pg Ay 0.2%0 -03 b kg ety | 0259 Phunge | T0Omen0s Ml aeE) faol anh L ration seabiiics
— e —— e - Ri N AN ¢ |
40 ¢ cere a mde e e
!a%bi y 0175 o2 43, 0.2484-04 , 20,0 B0 h) {0ty | 2056 (o1a0 [am 320 3938 Yesver
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For =mall librations {x(t)) » -g—:-(t - to). Since g% is positive
(4.2.24), e increases or decreases, depending on whether q is .«

nogative or positive, raspectively. Thus 02 is adiabatically

~l,p
stable while 00’1,9 is not. The "tidal stability” of a given
resonance is determined by whethar the tidal torque is greater
(unstabie) or less than (stable) the maximum amplitude of the
resonance torque.

We should observe that the adiabatir stability of the synodic
resonances is not governed as much by whether b(x) increases or
dec.eases, since this is a zollauvo.ly amall effect, but by the
asymmetry of the tidal torque. This asymmetry arises from the “act
that the torque is a rapidly decreasing function of the planet-
satellite distance. To lowest order, this asymmetry will add a 6
tarm to the right hand side of the second order equation of motion

for ¢ (2.9.17). This term is

2 dng
-plm g?_.- 3 pAz = lﬂi—d—t,. . {4.2.29)
nyay

As the coefficient p is negative, this asymmetry implies a
dissipative mechanism which tends to damp cut oscillations. The
results in Table 4.2.4 indicate marginal tidal stability for scme of
the resonances. This qualitati-—ely agrees with Hipkin's results.
The strongest adiabatically stable resonance involves Venua and the

resonance variakble ¢ Mercury alsc has surprisingly strong

2,-1,19°

resonances.

T =

B - aebe U AL S e b et
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Unfortunately, there are some serious flaws in either the
approximations or the supposed effect of a given type resonance which
drastically chaige thes results so far obtained. Also, the question of
the likelihood of capture into lihration needs to be answered. But
first, let's examine the approximations more closelv.

We could discuss the effect of second and higher order terms
which have been neglected. Although these terms may be sizable, it
it unlikely that they will critically change the order of macnitude
of the coeiflicient Al. It appears " at the orossest approximation is
the circularity of ;lanetary orbit although on the surface it seems
to be fairly reasonable, at least for Venus and the earth. After all,
the present eccentricity of the easth is - 0.017 while that of Venus
18 ~ 0.007 which are both quite small. (Mercury's eccer ricity is
~.2). But in the past !Brower and Clemence, 1961b), these
eccentricitics have varied considorakly due tu the long peried
perturbations of one planet on another (Table 4.2.5). The r.oon
itgelf is indirectly aifected by such perturlations, especially by
the long period fluctuation of the earth's eccentricity. These
fluétuation- have periods ranging from 50,000 years to approximately
two million yearg. The libration periods of all the planetary-lunar

resonances are all roughly given by

~ 20 ~ 2v10* z”'sec. ~60,C00 rrs. €.2.30)

T
period rﬁlT—

IXX

So the important question is, how aces the fact that the planetary
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orbits are eccentric and have long periocd fluctuations affect the
coefficient AI?

There are two separate effects. The first is due to the short
period averaging, in which tne eccentricity is treated as a
"zonstant". To estimate how it changes A].' a rough estimate of the
Bansen coefficient relevant to either planet is required. The

detinition rt x|  le) is (2.2.8):
*

(D)% coste) = E’X‘;'t(ﬂc“(‘!*tm' (1.2.30)

Since none of the rasonance variables contains the perihclion of
either planetar; resonance partner, the relevant coefficient is
x:'t'e). To ev. luate x:'t(e), relations which connect r and £ with
M are needed, The radjus r is related to a and £ by

r_ 1 {4.2.32a)
a - Y-ecosf®
while £ is related to M by the equation of center (Swart, 1953),

which {8, to lowest order,
£ ¥ W+le sinl. )
Therefore t'e function cos(tf) is given by

(4.2.33)
cos(tf) = cos(tMelet ginM)

Expanding the sine and cosine of 2etsinM, using br3y3el function

axpansions, we find (Dwight, p. 198, 1269),
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(4 '.34a*

cos(2letsinl) = J°(2te)+2J2(2te)cos(22.2) R
2.!1(2te)sinm.

sin(2etsint)
b}

Next, expend (f)’ to second order in e. Also use the fact that s > 1lto

simplify the coefficienta. The result is

(5)* = 14(55 2-sccosr +(32‘3)2 cos(f)y {4.2.352)

Next express the above in terms cf M, accurate to second order in e:

(E)° = 1+(5) -rme(cou (] 27 sln( M) sinX . b)

Multiplying the factors together and keepina only lowest ordmr

secular terms, we lirve

0
K, p(e) 27, 1250 e(3)7 ¥ 1-(ta) Zi(ae)2, U230

In the luia - - tetery d!turbing function, the minimum exponen* of
the xa - uf is approximately |p|, where |p} >> 1. Therefore
get ¢ - =« p u, the above equation for x:’t(e). Thus, to lowest
order, we can deduce that taking the eccent: icities int. account will

multiply Ay by the following factor;

Xg.p(%)xfp'c(ep)..(1_;(“”)2)(14(““)2). 6.2.37)

The data in Table 5 is taken from an article by Brouwer and van

wWoerkom (195°%), and gives the maxiwum variation of the eccentricity
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Ihe secular slaments of the planctn an (letsrmined by Prouwer

817 Van Woerkom (1950) using the Laplace-lagrange approximatios.

RIS IR B S A R v W IO B

due to the interplanetary pertuzbations just discussed {alsoc see
Brouver and Clemence, 1961b) using the Laplace-Laguange approximstion.
It appeirs that the fluctustions in b(x) for Venus must be of at
least an order of magnitude and may actually reverse the a'gn 5f bix).
Mexcury, on thn othar hand, fluctuates ©only by a factor of tws or
thres for the single angle synddic ramcnance and tha e-type r:sonance.
This implie: at the potential associated with the xero-
eccent: icity approximation is now split among sevaral "side~band®
fraquercies which differ by the motions of the pe-.talions of the
ea.th and the Aisturbing planet. The motions of the inner Linetary

perihel ioni are of order § x 103 sec., of arc per centiry, oS¢

4. inner

i 1
t planets

~ 5 x 107" /century » 10"  rad/sec. (4.2.38)

Compare th.s with the maximum valuu of 5 that the revonance can
withetand »ithout being discupted:

: ~12
0m “~ A““Al ~3rl0", {4.2.99)

Chviously the side band freqienciss differ from the libration
£:equency by sone small nultiple and should exsrt sirong scceleraticns
o1 the resonance variable, It i» possible that the moon could dbe
trapped not at the single frequency, but weeng the severa. side bam
frequencies, lmt such & motion, aat rely, appeacs to be highly
unatable to tidal disruption. The impor..rt point is that an

necontric planstary orbit effeclively destroys the phase relatinnship
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Letwesn the planel. and noon at 33njunction hecause of tho tigh
carmensurability retio, This . egpecially true for Venus since
c A D0,

There is yet anothnzr ong period nlfect associated vith <he
varying planetary tccentricity. A varyving acagentricity implies a
tire varyirg motior of the planutscy perihelion or a lox: per.od
Tsecular” azcelerstion. Thia wcxeleration ls of O(sec. cf arc/
ur:x.zyz), and bezsuse the ansocicted periods are up to seversl
reltiples of tne librat.on pericd, they would appear ove: a fow
oscillations as & nacular accaieration in the equations goverring the
side band frejuencies. A mwore uignifican> ef{fect arises from the
fact that thess lonj period varizzions (priwarily that of tha earth)
induce a corredponciing affect I the lunar eccentricity and
perihslion which wuld zeni to disript the eccantricity-iepenient
rasonancas.

The next problen Ls to estinate the probabiiity Pc that any
one of these re=on.nce variables made the transi-ion from positive
rotation :nto libr tion. Admittuodly, the theory developsd in
chanter thrae arpl ed to the casa where the tidal torque .1 snall
cormpared Lo the ra mun pendulum torque. MNor did we not consider
how long periadic lucturations .n the coefficleat b{x) o7 tha
resonance term aff-:ted capture. Therefore, any mmbers celculated
should be Indicoti-e nf t'e gere:al magnitude of P, For en e-type

resonanc - {{k| =1, P 35 aprroximately given by (3.2.12)
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2
p, = 2|8|¥/2, (4.2.40)

12 |8] << 1, The parameter 8 (3.1.5) can be related to carliez
-, 03
defined functions if we identify u'n,‘:olkl as Al and B, 8T nmy.

Explicizly,

Bl (4.2.41)
9n§n4’
3
where we have multiplied by “oxx”oxx) and have uned onx [} :-5 .
The strongest possible adiabatically stable resonance belongs to

Vanus, From Table 5 we f£ind

4(A A
B =
; (4.2.42)
9nyey
Calculating 8, with present values for the lunar orbital element, we

find that

- Y
8oy b - 10 6, B, v 1070, (4.2.43)

For an e-type resonance vhere b(x) is propcrtionsl to e, 8 tends to
ncale like -'3. Therefors, if the lunar eccantricity vere ten tires
smallar at transition than it is at present., the probalility for
capture would be increased to v I\,

In the case of the synoccic resonance, capture apisars to ke

painly due to the ¢=~dependen® term associaied with the tilal torque.

An estimate for Pc can be obtained from (2.1,14,)5)4
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PO = !?!,"‘..4'5’ ﬂwAL?_‘é.
™ 19(e-alTay 14.2.44)

For a doul'le angle synodic resonance, {a + g) 2, while foz a aingle

angle resonance = + q) » 1, The strongest poss:ble synodic resonance

involvas Veaus v.th
Bs 0,50 M= 1y=220g -0,

The probability “or capture is " 0.5 x 10-5, and unlike the previous
case, thars appears to be no way to substantially increase it. The
conclusisn to be drasn is that capture is a hichly unlikely event if
oniy tidal foxrce: are involvad.

The 1l ng tern variasiins in the pendulum torque associated with
a given resonancs may cause temporary capturs. Since the variation
in the coefficre-t bix) 13 a significant fraction of its msan value,
w» should expect that th> probability for temnorary capturs is much
larger than tha numbers ~alculated for pe.manent capture. But the
meximam cine that the livration can last ie of 0(1.0s y<s), the time
scale Lt lngy 36 »y the rariods associated with the so-called secular
vaziations of tha plancts. There is one f£inal argument to be
leveled against ur esrllar results. It im that only the synodic
type resongances tend to "lock" the moon at a fixed radivs without
erpreciably aff »:ting the other orbital parameters. Recall. that the

sta. le »~type 1eosonancas increase e if tnere is a tidel terqua. The

mean rotion, and therafore the semimajor ax:s, s Lixe! if the moon
is triipped in one of these resonances, but the mean raiius actually
tends to increase. The short period average of x to lowenst nrder :n

e is
§~1+§,2, {4.2.45)

The jresent value of e ruts an upper bourd on the lifetirne of ar
e~type resonance. This fraction is qualitatively small compared to
the change in a, due to the tidal acceseration over tha li’etime of
the earth~moon systam. Thus, only the syncdic type iesonance
effrectively trap tha mon at a fixed rad!y . But the syned:c
resonarces are, at best, marginally stable to tidal disrupt:on, are
subjrct to long period disruptive torcques due to “he "secular”
intezplanetary perturbations ami the associated "secular® clanje .n
the lunar mean motion, and hava a very low probabilitv of capture.
We are forced to conclude that it is unlikrly that the roon was ever
trapped in an orbit-orbit resonance with a planet.

There is one last question to ask, C>uld the orbital alements
have been aignificantly changed ai'her by passage throigh t'w
resonanca or by temporary capture? The chrange in thu mean valus of
the momentum variable due to passage throujh resonance im -~

approximately given by (1.2.47):

ax ~ g1}/,
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VWeive alrealy scen tiat Bis a very small paraneter for each of the
‘urar resonance., Far an e=type regonance, Ax 18 roughly proportional
to the :raction:l change in the eccentricity. The above affect cannot

he very lazge 1rless ¢ wero very small before transitis-<,

»

Th: ptenor(non of temposary capture for a.. e-type res>nance
could laad to » much larger change in thae eccentricity, although
at:1l only & grall fraction of its present va.ue. This can be
deronstratid b comparing tie estimated lifntire of the reschance
(~ lO5 yrs.) w.*h the time necessary to have tidally changed the
tracticnal rad.as of the woon by an amount. sqial to 1/20% 14.2.4%),
Thisx t-me is a;proximataly

.:S.i::- ~ f‘T.‘».()'?'.'esw .

e
At nos:, tenjxr-ary captuare may have chang ¥ the luna~ eccontricity
by as wmcr as LS.

W2 stould note that the inslination-type resonances have not
neen manticne | since treir strungths are an ozder of magnitude
staller than =iat of <ne e~types. This fo'lows from the shservation
trat all . or 'aixed-I type zesonance varialles have a coefficient

bix) groportional to !2 or II'.

ava

4.3 ON THE THREZ-EATELLITE RESONANCE OF JUS ITER

The theory developed in the first thrae chapterr has met with
varying success when applied to specific examples. The priacipal
problem is that whereas the Hamiltonian irvoked is ore-direusicra’,
thr: real world is not, There always seamed to he a omplicatici: it
wan side-band frequencies in the ca:z. of tue lunar a1d plaretary
resonance. In the example of the two-body resonance, it was the
potivibilicy that sametire in their evolution twe resonance variables
as‘iociated with the sume cammensurability might overlap and destroy
the simple one-dimensional description of the phanorena. Yhether
au:h complex pheromena will yield their s.crets 3¢ reacily as the
Harilionian we derived with the analytical tocls developed to
describe transition is besxt left tc future investigation,

There is » mcre specific example of a satellite esunsnce ir
v.ich the necasrity of a multi-resonance-variable tleory to explain
trith capture and its present lidbration axplitide soums unaroidable.
Ahis 48 the thraoe oC; '-j.ace relation satisfied Xy the tarec
l.orer Galilean satellites of Jupiter. {2

2 )

91 7 Ponr T P
(Jagihara, 1972). The following obsarvations about t-is relation

are especially interasting. 1) No libration amplitide has bewn
observed, 2) the sate.lives also nearly satisfy a li¢l commersurability
biutween the inner pair (JI and JIJ) and the outsr pair (JIT and JIII

3) at the present time, a tidal torque which acts rrincipelly or
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the irzer satellites crives thws towar: this cammensurabllity) and
4) the obieried ecceniricities are small asdl variable and the ‘na1seas
ara withiy ai. order cf magnitude c¢f one amther.

in .»* “unar thecry we found that nysdxdi~ frequesncins could be
found in <he sxpansior of the disturbing fanction. It hapoenad
bezauss the rincipel disturblag furction R(p * 1) containad
;axplicitly tae orbital elements of the w8xt: as woll as of the
perturning plunet and rhe woon. This occurs only because theze
axist two dis:inct "primary” bodies in tho problem: the sun for the
planet: and tie earth for the moon. In Supiter's three-satellits
resonance there exists one coxmon primary. Any inter-sstellite
gravitationel intera:tion contains th? orhital elements of just two
of tham. Sirze the nupposed :peronance involvas uxplicitiy the mean
lungizudes ot three xdies, this angle must occur as a second order
term in a perturtatinr. expanaion. This inplies that perturba‘:ions

in the mean onuyituce or semimajor axis of ary one vf taese

312 4

satellites i« of 0(:s ¥). A typical mase ratio is 107, we
found that i1 the case of lunar synodic resorancas, both capture and
dizping were extrome'y slow, buing gcvarnse by the ragnitude »f the
uctuatioras ir zhe mean motion, S what is going on in the
Jupiter satn’lite cane? D:d we niss something in the devel.orsen:
shich night -adically affect the results?
Rarall zhat in “he generating furctisn fron which the stort

pericdic pexturtations wera obtainred, there occurred ir the

dencrirnstor >f each t2rm a factor nearly ugual to the frequency of

ol ey @y 1 # [T P I e N
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the corresponding cosine argument (2.5.21). It eo happens tha-
Ssuillart (ses Nagihara, 1972) has developed an anelytic theory along
the sane 1ines as outlined in chapter th-wee, and he £inds thal the
dorinant contridutiuns involve the coupling of e-tvpe anals variables
which nearly satisfy tie nesr commensuraosilities anong the inter

and outer pairs of satellite:s., We rhould also point out that the
synodic frequency occurs as the differance of two e-type frequencies.

tpecifically, they are

o = pmPArpreps

Gy = App=?Appy+eps

§y = 4y A+ Ny - By
The frequancy cccurring in the secend order coupling of these

Sominant terms is

)= nl'anI'(%%n’sec'
We should note that the true frecuency .tssociated with the releted
e-typn angle variable differs fram the ibove Ly an smount (%) ‘ecos?)
and is a natural result of the perturbntior expami:cn. The
fluctuaticns . which nay occur in v due to the renc:rance appear to be
vestricted to the mean motions. Anothur possibility is =hat i! the
e cosd teym did cont:ibute a large retrograde motion to 2, its
absence in v may indicate a breakdown in the pertabation mathod.

The differsnces of the mean moticns in the term (n! - 2n”) are:
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N = 20 '19489/1 N Bacause of capture considerations the second seenms the most plausible.

13

2 11;1?}74/.;,,5,: ¥hether the above remarks have any relevance must await a rore

1Y
4.
° 3 rigorous exsmination of this type of problen.
r, ~:?n“ = 07770/y = 27C71 /year,

ne of the possibla implicationn ¢f previous remarks is that the
interaction of one or mure s~t,pe variables with the symolic variable
was crucial in both capture and subsequant Jamping of the raescnance.

I{ thes: variables were tignif:nant, then 4he Impressed retrourade
.1}

mtivn of, say, T:' must have been very largn in the past (grester
than 2 * 270°.1/year). From {4.1.3) we find =hat if t, wer> as larye
as 1v'2, the impressed retrograde moti~n of & {s stil] ¢f O(digreas
day). My quess is that the cxitical avolut.on which ¢ <plaine the
present small librations appears to be tied to an int raction
involving synodic ard e~type angle variables. GHow thase variables
came tc ovarlap can be explaired by either of the following tso
scenarios:
1) Traraition into the three-bcdy syncdic resonance occurr=}

2ir.t. The sysiem then evolved thiough the e-type resonance.

Trese variables' complex interaction led to s rapid damping

of the ampiitude of libration of the synodic variable,

2

—

F-rst, a pair of satellites established an e-type resonance.
Subsequent .y the systam evolved toward the synodic ccmmoen=-
sirability. Sauehow the criginal e-type resonance wes

dicvructed while allow.ng capture jnto the synodic to occur.

EECIRCRE | 1Y, LIDT N+ Tt e L T S P P N T QY F X Y 1> 30 W

B
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APPENDIX A
THE CANONICAL EQUATIONS OF MCTION BY THE .JACOBEAN METROD*

A transfoymation from a set of coordinate viriables lqi,pi" to
a new sat {a‘,ei) can be accomplished by a generatiny function

s(ci,ai,t) defined bv the relatiosn

. gy v AS .
") pj.géii. ®) g A% r.1)

where S is a solution of the H-J acuation
B (my . 84) = Hip;.q5 .E' . 29
gsince the disturbim, funct.on R is considered snall compared to Ho'

arA can be expanced in terns of a,. 61, and t, set H' = R, Tha

equations of motion of thn new variables become

i, R ., du, 2R .

In the lamit R = O, (a&,el) are constante  Therefore set R = 0 ¢
determine (o&,al}. In epherical cooxdinates the two-body

sami’tonian Ko is
A (rre (B - (BY)-4 - -5 0.

H_ ‘8 the total energy of the two-body systen and can be choser to
(-]

*The material presented here is drawn fram an expos.tion Ly E. ¥

Brown in PLANETARY THFORY, Ch. 4.
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be one of the constants of motion., RAlso, the tinn dependent part of
S(ni.qi,‘_) can be chosen such that H' is .dentically gere. If we

write

5("1-‘11v‘) e oyt - S*(ﬂi,qi,t),

then o is equal to "o' or
X = 'ﬁ )

1f we demand that the new gensrating function s* (11,qi,t) is inde-
pendent of ¢,
a8

The nexat step is to substitute py for E— in {A.2). The result

is

a8 4 Lagte 2 1 a8™\2
TG A GLRYEE -0 an

The only form of S* (“i'qi) for which (A.7: is separable is

8% = 55(0) + S3(0) + S,(r). (A.8)

since ¢ does not explicitly appear in (A.7) set 52 equal to

32 e 153. (.9

Separate the remaining terms in (A.7) into those which depend on ©

and those which depend or: r, and equate each to a constant :2

2.1‘?\0

solution Jor 5 is

r 2 24 2
S s -ﬂlt 0\35 Ofr.(zﬁl’arﬁ '%)é dr * L~(‘§"::-;+é)‘ta'9 {a.10)

m(lmwﬁﬂluanwn‘-me.. P T N
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The constants LA 9_, arg at our disposal. Choose the valuas
ro ® To@pericec® afl = 0) 1 G =0 {A.12)

B, are defined by relation (A.lb):

i

\R r. . dr _ (A.12)
a)a’-z:‘—;s-ia R

n (aege B - $E)E

r o Ir e apds.
b) B s a8 e -S —— e R - - S22
H P 2 M el ) 2 L, L
3%y ry réf2egs Lo -4 2 5 (e =77 ]
A8 . & ~5 ¥
C) fq e 7 2 Qe =3 v
o 2 2 ~y
Sy ‘0 s 9\'11. :,.,39'5

Beginning with (A.12a), we know that the integral mast be equal
o 31 + t and that Bl is a constant. This suggests that the
integration variable be changed from v to N since M :s a licear
function of t. Using the ralations

r = el -0 cos k)
and

[ 4
: & S eat gin g,
™M T

the inteqral becomes
r ir P 4ea.7san &M o (A.13)

—_—— . s - " -
(c Mmooy g ((Mal)-ePVeay e unmz 2 'L
o (E0y+ ZT ri % (] ( 1 ; 2y
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Since the integral must be proportional to M, a, is .iozced to take

the value

oa 3§ .;2\
2 ad 1A.14)

and

. P R P
31 -to-n~ 'uq' T‘

{r.15)
Proceeding on to the equat.on defining Bz‘ the integral

S;Q'f‘

v
—_——— T
- 2 2%y
[rl TPiaay e BB
is a linear funcrion if tranzformed to the variable f. Making use

of the previcus transformatios and

2
w2,
14 Bi\l'cz

the adbove reduces to j'fdz = £. In the second integral, if we maxe
-]

the variable transformation
' ““’”‘
SN u w ~ -
. ,J b B sin
the integral reduces ko f:du = u. The functions u and @y can be

discovered by inspection of the spherical triangle (Fig. A.l) from

which can be derived tlw relation

s.r & = 8in i sin{f+w).

{»,16)
e(: = X oCO8 i,

T™hus

PIGURE A.l SPHERICAL TRIANCLZ
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faswe B-0 {a.17)

The integral in the 33 equation can be reduced by a similar

trasformation to
- - ’_1 05 H t -
ag b 1_:‘.\:_‘) tar 7 (tos i tanw)

But this integral equals ¢ - 8, by (A.12¢c). Therefore,
""“(""83) s ccs i tan w.

Again we appsal to the relations derivable from Pig. A.l; we find
f3= Q. ta.18)

Tollecting the results, we have

Wy - I ECEE)
1 la & T
o 2uafl - o7) £y D-G
_— .19
013 T co8 I,/Mﬂ(] - 92) fj; = fa

The equation of motion for the set of orbital elements {a,¢,I,t,3,0}

can be derived from the above and (A.3) as a purely algebraic exercise.

The adgve set is not the most useful for cur purposes. Make
another H = J transférmation on ("1'81’ to a new net ”1'"1} and
damand that the new Hamiltonian satisfy

Y.
H'' = ' SR e :"‘:. = }o-aly (A.20)

3%
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The transformation iw defined by the relations

~

a) B = gf‘t (ngy0y)

tr.21)

b) Ji‘

Qo

(AT
Again, let R m 0 to determine the new set. Since H' = 0 if R = O,

we can demand
»h
s% -Gt + 8 ("1v'-’i) (A.22)

where the new generating function s“lai,u‘) is explicitly inlependent
of the time. We have some freedom in choosing s"‘"i"’x" and shall
demand that it Fe equai %c the identity transformaiion in the old
variables {°1'81,

S“Z’v‘p»’i' = ;;.L;l»-,:;), ‘.‘r',',-:w-; HEREIN

Now we can write down the original s* “'1'“1’ and use (A.15) to

eliminate t. The result is

o N .
s%e S Moy (13- oyl

(A.23)
There is cYwiously quite a bit of freedom in choosing the new
variables. One choice for wy is
w =M
wy = 5-0 (A.24a)
wy v Y]

Por which the conjugate action variables are
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P
Iy = oyt fme(l = o7)

N (A.24b)

J3z 33 = cos IJna(l -ed)

This set constitutes the well -known Delauney system of elements.
Several similar sets of conjugate variables can be obtained by
rearrangament of the angle variables in {A.23). A modified set used

i~ this paper is

Leyn s AsMsS
roll e o)l 3o

-l (A.25)
2-(1 - cos ) uelt - 6?) ; 0.
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APPENDIX B
EVALUATION OF THE A.TION INTEGRAL

The fact that the action J is an adiabatic constant as long as
the instantaneous frequency is fast compared to the slow changes
induced in a Hamiltonian system, provid:s a means of obtaining the
secular motions of H and of the root= as a function of c. Ve are
especially intere “ed in evaluating Jpos.rot. at transition. Tran-
sition in the small fluctuation limit involves the coincidence of
the two interior m-roots, while in the large fluctuation limit zhe
condition is that b(x“) vanighes. Each of these will be calculated
separately.

In the positive rotation phase, the action is chosen to vanish.

The explicit integrand we evaluate is
2 -1 r 1)ags2nmxt
Jpos.rot.=o=[° xdp = -2k o(—-kx+ Jags2nk™".  (m1y

The ‘ntegrand (~kx + 1) is positive definite for all physical values
of x, implying that the associated integral is positive definite.
Changing the integration variable from x to ¢, and integrating over

the range x <xs x where x and x _ are the left and right

2= 21~

bounding roots respectively, we obtain
f

n X
f(mxsrra = | 2P (xxe )G .2

X —

d ax
where Tg%r-is obtained from (a%/la‘) and is:





